AD-764 732

VULNERABILITY OF DRY BAYS ADJACENT TO FUEL TANKS UNDER HORIZONTAL GUNFIRE

Robert G. Clodfelter

Air Force Aero Propulsion Laboratory Wright-Patterson Air Force Base, Ohio

March 1973

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

VULNERABILITY OF DRY BAYS ADJACENT TO FUEL TANKS UNDER HORIZONTAL GUNFIRE

ROBERT G. CLODFELTER

TECHNICAL REPORT AFAPL-TR-72-83

MARCH 1973

Approved for public release; distribution unlimited.

NATIONAL TECHNICAL INFORMATION SERVICE

AIR FORCE AERO PROPULSION LABORATORY
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56/80/25 July 1973 - 350

ラン・ラン の見る の物理者が出版報道の機能を重要な内に、これのいれる事はまの様で

UNCLASSIFIED Security Classification			
DOCUMENT CONT	POL DATA - R	L D	
(Security elassification of this, body of abstract and indexing			overall report to classified)
ORIGINATING ACTIVITY (Carporate author)		i	COUNTY CLASSIFICATION
Air Force Aero Propulsion Laboratory Wright-Patterson Air Force Base, OH 454	22	28. GROUP	SIFIED
wright-ratterson Air rorce base, on 454	د ډ.	To. Thousand	į
S REPORT TITLE		<u> </u>	
VULNERABILITY OF DRY BAYS ADJACENT TO FUE	L TANKS UNDE	R HORIZON	ITAL GUNFIRE
4 DESCRIPTIVE SCIES (Type of report and inclusive date s)			
March 1966 through June 1971			
s Aurich(S) (First name, middle initial, lest name)			
Debout A Cladfelton			
Robert G. Clodfelter			!
R. REPORT DATE	78. TOTAL NO. C		76. NO. OF NEFS
March 1973	1	<u> </u>	
SE, CONTRACT OR GRANT NO	es, ORIGINATOR	A REFURT NUM	40ER(\$)
6 PROJECT NO. 3048	AFAPL-TA	.∵¥3	
3040	ALA: E · /A	. 17	
^{e.} Task Nr. 304807	eb. OTHER PLFO	X + W *: (8) (Any	other numbers that may be assigned
10 L. TRIBUTION STATEMENT			
Approved for public release; distribution	unlimited		
11 SUPPLEMENTARY NOTES	12 SPOP SONIES		;
			oulsion Laboratory ir Force Base, OH 45433
	ar ignt	L (CI 3011 A1	TO TO CE Base, On 45455
19. ABSTRACT			
This report deals with the relative w			
bays adjacent to fuel tanks as a function gunfire was the threat; a high level of s			
external to and in the dry bays. The res			
are presented. The overall conclusion of			
less susceptible to fire and explosion in	nduced by gu	nfire and	should produce less
aircraft structural damage than JP-4.	્		-
	,		
1 1 50pt 4 4 55 0			المراق المراجع
DD FORM 1473		UNCLASSIF	TED

; 1-a

UNCLASSIFIED
Security Classification

UNCLASSIFIED Socurity Classification LINK A LINK . KEY WORDS ROLE ROLE Gunfire Aviation Fuels, JP-4 and J9-8 Flammability Limits Fuel System Vulnerability Aircraft Safety

6U.S.Government Printing Office: 1973 - 759-495/638

UNCLASSIFIED Security Classification

VULNERABILITY OF DRY BAYS ADJACENT TO FUEL TANKS UNDER HORIZONTAL GUNFIRE

ROBERT G. CLODFELTER

Approved for public release; distribution unlimited.

1.0

FOREWORD

This report was prepared by Robert G. Clodfelter of the Fire Protection Branch, Fuels and Lubrication Division, Air Force Aero Propulsion Laboratory. The work reported herein was accomplished under Project 3048, "Fuels, Lubrication, and Fire Protection," Task 304807, "Aerospace Vehicle Fire Protection."

This report covers research accomplished from March 1969 through October 1971 and was submitted by the author 21 April 1972.

The author wishes to acknowledge the valuable assistance and contributions of the following: Mr. V. Balachandran, University of Dayton, for assisting with the statistical analysis and Mr. S. Shook, Mr. R. Lillie, and Mr. D. Tolle, Fire Protection Branch, for their efforts in data reduction. Special *hanks is given to Mr. J. O'Neill, Federal Aviation Administration, for conducting the test program at the National Aviation Facilities Experimental Center, Atlantic City, New Jersey under Air Force Delivery Order F33615-67-M-5000.

This technical report has been reviewed and is approved.

ER. Thudson E. R. HUDSON

Chief, Fuels and Lubrication Division

ABSTRACT

This report deals with the relative vulnerability to incendiary action of dry bays adjacent to fuel tanks as a function of fuel type. Cal .50 API horizontal gunfire was the threat; a high level of simulation was achieved by having air flow external to and in the dry bays. The results of a wide range of test conditions are presented. The overall conclusion of the investigation was that JP-8 fuel is less susceptible to fire and explosion induced by gunfire and should produce less aircraft structural damage than JP-4.

TABLE OF CONTENTS

SECTION				PAG
I.	INT	RODI	JCTION	1
II.	EXP	ERII	MENTAL DESIGN	3
111.	TEST	T DE	ESCRIPTION	4
IV.	STA	TIS	TICAL PROCEDURES	12
	١.	Sta	etistical Methods	12
•	2.	Tes	st Description Code	14
	3.	Ass	sessment of Results	14
٧.	ANAI	LYS:	IS OF TEST RESULTS	29
	1.	Ter	nperature Effect on Standoff Overpressure	29
	2.	Tar	nk Pressure Effect on Standoff Overpressure	29
	3.	Ext	ternal Airflow Effect on Standoff Overpressure	32
	4.		fect of Void Space Air Changes Per Minute on Standoff erpressure	35
	5.	Dar	mage Potential	40
	6.	0tł	ner Factors	4 8
VI.	CON	CLUS	SIONS	50
APPENDI	XI.		TEST RESULTS	53
APPENDI	X II	٠	POSSIBLE CONTAMINATION OF JP-8 TEST BY PREVIOUS JP-4 TEST	83
APPENDI	X 11	Ι.	OXYGEN DILUTION DUE TO INCENDIARY FUNCTIONING	85
APPENDI:	X IV		SAMPLE STATISTICAL PROBLEM	8 9
APPENDI:	x V.		PROPERTIES OF JP-4 AND JP-8 FUELS	91
DEFEDEN	rE C			93

LIST OF ILLUSTRATIONS

IGURE		PAGE
1	Initial Test Article (17-Gallon Tank)	2
2.	Overall View of Engine, Test Weapon, and Test Article	7
3.	FAA Gunfire Test Article	8
4.	Summary of Test Conditions	9
5.	Overpressure vs. ACPM for JP-4 and JP-8 Fuels in 9-Inch Standoff	36
6.	Overpressure vs. ACPM for JP-4 and JP-8 Fuels in 4-Inch Standoff	37
7.	Overpressure vs. ACPM for JP-4 and JP-8 Fuels in 27-Inch and 27H Standoff	38
8.	Overpressure vs. Air Flow in Standoff	41
9.	Probability of a Given Overpressure or Greater Occurring	44
10.	Probability Distribution for Standoff Overpressure	45
11.	Specific Damage Potential for Each Standoff Overpressure	46
12.	Total Damage Potential vs. Safe Standoff Overpressure Limit	47
13.	Final Oxygen Volume Percent in Dry Bay After Incendiary Reaction	88

LIST OF TABLES

TABLE		PAGE
$\Gamma_{1}^{\mathbb{Z}}$	Standoff Fire Duration, JP-4 vs. JP-8 Fuel	15
II	Incendiary Burn Times in Standoff, JP-4 vs. JP-8 Fuel	± 17
III	Initial External Fuel Spray Time, JP-4 vs. JP-8 Fuel	19
IV	Time to Maximum Standoff Pressure, JP-4 vs. JP-8 Fuel	21
V	Maximum Standoff Pressure Rise, JP-4 vs. JP-8 Fuel	23
VI	Maximum Standoff Pressure kise, JP-4 vs. JP-8 Fuel	28
VII	Temperature Effect on Maximum Standoff Pressure Rise	30
VIII.	Initial Tank Pressure Effect on Maximum Standoff Pressure Rise	31
1 X	External Air Flow Effect on Maximum Standoff Pressure Rise	33
X	Effect of ACPM on Maximum Standoff Pressure Rise	39
ΧI	Air Flow Effect on Maximum Standoff Pressure Rise	42
XII	Summation of Results	49
λΙΙΙ	Maximum Standoff Pressure of First vs. Last JP-8 Shot of a Series	84
XIV	Sample Statistical Problem (Random Numbers 0 to 35) B=0.64 (By Definition)	90
χv	Properties of JP-4 and JP-8 Fuels	92

SECTION I

INTRODUCTION

During March 1969 an extensive gunfire test program to evaluate the vulnerability of JP-4 and JP-8 fuels to external fires induced by incendiary gunfire was initiated with FAA (NAFEC), Atlantic City, New Jersey, by redirection of effort under an existing Delivery Order with the AFAPL. The term external fires refers to sustained burning outside the fuel tank (i.e., void space, dry bay areas) either within or outside the simulated aircraft structure. The program with the FAA represented an extension of a small-scale liquid space gunfire test effort conducted in-house by the Air Force Aero Propulsion Laboratory in 1968. During this preliminary testing, the low volatility fuel, JP-8, exhibited external sustained fires only 3.1% of the time, whereas the standard Air Force fuel, JP-4, sustained fires 68.6% of the time. The test article used in the initial program is shown in Figure 1 and details are given in Reference 1.

The FAA program used three larger replica test tanks with more realistic configurations and control of fuel system operating parameters (such as internal pressurization) and considered the effects of internal dry bay ventilation rates as well as airflow exterior to the simulated fuselage on the ignitability, flame propagation, and flame sustainment properties of JP-4 and JP-8 fuels. The FAA long-range gunfire test program involves several phases, but initial emphasis was directed to the fuselage replica tanks and the relative vulnerability of JP-4 and JP-8 fuels.

The purpose of this report is to provide a detailed assessment of the horizontal gunfire tests conducted by the FAA through June 1971.

The results presented herein include a refinement and an extension of the information given in AFAPL-TR-70-93 "AFAPL Aircraft Fire Test Program with FAA 1967-1970," dated June 1971.

Figure 1. Initial Test Article (17-Gallon Tank)

SECTION II

EXPERIMENTAL DESIGN

Several items must be considered in designing a gunfire test program to assess aircraft survivability/vulnerability. All programs have cost and time constraints. One approach that may be taken is to strive for a very high degree of simulation. Real aircraft fuel tanks may be used, but the threat and operational environment must also be simulated. Even with a very high degree of simulation of this environment, the test results are still estimates based on statistical sampling and can be statistically valid only with sufficient sampling. Many tests with a high level of simulation may conflict with the cost-time constraints; therefore, the scope of the test effort may have to be restricted in order to obtain valid results. Unfortunately, if the scope is too limited, making general conclusions applying to conditions not specified in the test would be impossible. This is true because high variance is associated with most response variables which quantify the projectile-fuel tank interaction, regardless of the level of simulation achieved in the test program.

The approach taken in this effort was to design an experiment which would be statistically valid yet provide general conclusions. Trade-offs were made in the level of simulation in order to accomplish as many tests under as wide a range of conditions as possible. The number of times each set of test conditions was repeated was based on statistical principles and a projection of the expected test results. In other words, if a large difference in response was expected between two sets of test conditions, a smaller number of repeats would be required than if only a small difference was expected. An example which illustrates this point is presented in Appendix IV. All factors which were not controllable, such as ambient temperature, projectile dynamics, etc., should have entered into the program in a random way. Complete randomization of the factors would have made the test sequencing unmanageable, and trade-offs again were required; however, some effort to randomize the uncontrollable parameters was included in the program to ensure that the test results were not biased by the uncontrollable factors.

SECTION III

TEST DESCRIPTION

The objective of the test program was to determine the relative vulnerability of JP-4 and JP-8 fuels to fires in areas outside the fuel tank (i.e., void space, and dry bay areas--also referred to as standoff). For most of the test program, the only variables were fuel type, void space volume, void space ventilation, and external airflow. All other factors were controlled at a fixed value. The following test conditions were established for the initial phase of the test program:

- 1. Fuels: JP-4 and JP-8 (118°F flash point)
- 2. Projectile type and velocity: Cal .50 API, 2400 ft/sec.
- 3. Projectile trajectory: Horizontal, impact angle of 30°.
- 4. Tank volume: Approximately 90 gallons
- 5. Fuel temperature: 90°F ± 5
- 6. Fuel tank pressure: 5 psig
- 7. Fuel height: 18 inches
- 8. Impact point: Center of liquid, approximately 9 inches below the fuel/ullage interface.
- 9. Ullage: 25% of tank volume
- 10. External air velocity: 0, 90, 125, and 300 knots
- 11. Standoff distance (striker plate to tank distance also referred to as void space): 1, 4, and 9 inches
- 12. Void space ventilation:
 - a. 18 ACPM* at 90 knots external airflow and 4 inch test article
 - b. 75 ACPM at 90 knots external airflow and 4 inch test article
 - c. 58 ACPM at 300 knots external airflow and 4 inch test article
 - d. 180 ACPM at 300 knots external airflow and 4 inch test article
 - e. 23 ACPM at 90 knots external airflow and 9 inch test article
 - f. 96 ACPM at 90 knots external airflow and 9 inch test article

- g. 101 ACPM at 300 knots external airflow and 9 inch test article.
- h. 325 ACPM at 300 knots external airflow and 9 inch test article.
- *ACPM Air Changes Per Minute

The projectile velocity (2400 ft/sec) and striker plate (first impact surface consisting of 2 plates made of 0.125" and 0.090" 2024T3 aluminum) configuration were selected to give maximum incendiary functioning in the void volume. These were selected by making two shots into each of three standoff distances (1, 4, and 9 inches) at three projectile velocities (1800, 2400, and 2900 ft/sec) and noting the incendiary burn times. From the 18 shots, a projectile velocity of 2400 ft/sec produced the longest incendiary burn time (10 to 18 milliseconds, on the average). The biggest ignition source possible with a Cal .50 API, therefore, was available to ignite any fuel in the void space. External airflow around the test article was generated by ducting fan air from a TF-33 engine.

in addition to the above, a few tests were conducted with other test conditions: (1) polygrethane flame-arresting foam in the dry bay; (2) polygrethane flame-arresting foam in the fuel tank; (3) fuel temperature other than 90°F; (4) fuel tank pressure other than 20 psia; and (5) various sizes of dry bays on both the projectile exit side and projectile entrance side of the test article.

Photographic data was recorded by two cameras at 3500 and 7000 frames per second, color film. The test article was viewed through the plexiglass top plate. Overall film coverage was provided by a camera operating at 500 frames per second.

An overall view of the test range is given in Figure 2, and a typical test article designed to simulate a fuselage fuel tank is shown in Figure 3. Figure 4 shows the various test article configurations and gives a summary of the test conditions. Detailed test conditions and results are presented in Appendix I; additional background information on the test procedures are given in References 2 and 3. Appendixes II

and III present two potential problem areas considered prior to detailed analysis of the test results. Appendix V gives the properties of the two fuels used in the test program.

Figure 3. FAA Cunfire Test Article

Figure 4. Summary of Test Conditions

Figure 4. Continued

新於 **建筑位置 英华**西京 在 **路**內對 地名加墨西班马西西西西哥 医甲基酚 的复数

Figure 4. Continued

SECTION IV

STATISTICAL PROCEDURES

STATISTICAL METHODS

The first step in the analysis of the test results was to compare the recorded responses for the two fuels (JP-4 and JP-8) under identical initial conditions. Statistical methods were used in the comparison to assess the question, "If a difference between the response variables for the two fuels is noted, is the difference small enough that it could have occurred by chance or is it so large that it most probably is a true measure of the difference between the two fuels?" The following statistical expressions were used in this analysis (the reader may refer to the many textbooks on the subject for details).

The sample mean $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, where $X_1, X_2, ..., X_n$ denote the responses of the random variable X, and n is the size of the sample, provides an unbiased and minimum variance estimate on the population mean μ , which is unknown.

The sample variance
$$S^2 = \begin{bmatrix} n \\ \sum_{i=1}^{n} (X_i - \overline{X})^2 \end{bmatrix} / (n-1)$$

provides an unbiased estimate of the population variance σ^2 . Morever if ${\bf S_1}^2$ and ${\bf S_2}^2$ are two independent estimates of the same unknown, σ^2 based on ${\bf n_1}$ and ${\bf n_2}$ samples, respectively, then

$$F = S_1^2 / S_2^2$$
 or S_2^2 / S_1^2

(the ratio selected in such a way that the larger S^2 is in the numerator).

This yields an F with $n_1 - 1$ and $n_2 - 1$ degrees of freedom for the numerator and denominator, respectively, assuming $S_1^2 > S_2^2$, which could be compared with F distribution values for homogeneity of variance.

The T test which was used to test for the significant difference of means was based on the assumption that there was "homogeneity of variance." Thus, the F ratio was used as a measure to check the validity

of this underlying assumption. Values of the F ratio near one are desired. Once such an assumption is established as valid, then any difference in the data is solely due to the difference in means. In a large number of cases in Table I, the F ratio was not significant, which ensured homogeneity of variances. Hence we made a general assumption of "homogeneity of variance," which enabled us to use the T test for the difference in means.

The criterion for comparing the means was the Student T test.

$$T = \frac{\left| \frac{\overline{X}_1 - \overline{X}_2}{n_1 - 1) \sigma_1^2 + (n_2 - 1) \sigma_2^2} \right|^{1/2} \left(\frac{n_1 n_2}{n_1 + n_2} \right)^{1/2}$$

A $T_{\rm C}$ value was chosen to test the results. If the calculated T is less than $T_{\rm C}$, there is probably no significant difference between the means. If the calculated T is larger than $T_{\rm C}$, the two means are not necessarily different, but it provides a strong argument in favor of a difference.

A $T_{\rm C}$ value associated with the 95 percentile point was used in the comparison. This is equivalent to a 10% error for the "two-tail" problem of interest; that is, if 100 sets of response variables are to be compared, at least 90 sets would verify the conclusion and no more than 10 sets would not. Values of $T_{\rm C}$ are given in most statistical reference books as a function of degree of freedom (DF = n_1 + n_2 -2) where, for our tests, n_1 is the number of tests with JP-4, and n_2 the number with JP-8.

The results of the statistical analysis for the two fuels are given in Tables I through V. Reference Appendix IV, which illustrates the inability to show a difference between means when that difference is small and only a limited number of tests are conducted.

2. TEST DESCRIPTION CODE

The following codes designate the items given under test conditions (a,b,c,d,e,f) in Tables I thru V.

- a = Fuel Yype (4 = JP-4, 8 = JP-8)
- b = Fuel Temperature (°F ± 5 °F)
- d = External air flow (Knots ± 10 knots)
- $e = Air changes per minute in standoff (ACPM <math>\pm 2 ACPM$)
- $f = Initial fuel tank pressure (psia <math>\pm 2 psi)$

3. ASSESSMENT OF RESULTS

The following discussion of the test results considers both the statistical information of Tables I thru V and other factors of the "real world" which could not be included in the statistical analysis.

a. Standoff Fire Duration (Table 1)

From the "real world" point of view, it is possible for the Standoff Fire Duration to be dependent on the fuel type. Unfortunately, the total Standoff Fire Duration was unknown for several tests because the data camera ran out of film before the fire stopped. This occurred during 21 of 98 tests with JP-4 and 29 of 92 tests with JP-8, so about 1/4 of the input data indicated less than the actual standoff fire duration. With this limitation, the following general observations were made.

a. At very low dry bay ACFM, the standoff fire duration for JP-8 was 2 to 5 times longer than for JP-4 (typically 350 vs 80 msec). JP-4 burns faster and thus depletes the available oxygen faster.

TABLE I

ſ		 			 .													
	REMARKS									·								
	* -	,	1.90	1.86	1.83	1.90	1.81	1.36	.81	1.83	1.90	2.02	2.02	1.94		 -	2.92	
	۲		1.88	6.73	1.24	1.65	0.43	2.53	1.87**	6.50**	1.03	16.	.51	2.40			1.50	
s (MSEC)	u. :	Ratio	27.9	2.3	7.3	431.2	1.1	14.8	.5. 52.	<u>:</u>	2.29	1124	3.2	3,7			7.1	
JP-8 FUEL	(X)	JP-8	310	432	279	1051	262	65	403	330	285	1333	350	2580			378	
jp-4 vs.	MEAY (X)	JP-4	7.1	26	312	202	239	183	252	75	204	293	331	236	Data	Data	257	
STANDOFF FIRE DURATION FOR JP-4 vs. JP-8 FUELS (MSEC)	: (c ²)	3P-8	61,627	8677	436	1,318,169	8103	554	4116	3975	8024	3,738,790	4177	3,799,744	Insufficient	Insufficient	684₺	
FF FIRE DUR	VARIANCE (c2)	JP-4	2211	3724	3190	4217	9077	8200	35442	4435	18,404	3325	1304	10,079	Insuff	Insuff	6161	
STANDO		JP-8	5	ιn	ις	က	9	4	9	۰.	4	44	3	4			۲۵	
	E	JP-4	4	5	9	و	9	9	۵	S.	ν	ო	4	₹7			2	
		Test Description a b c d : f	(-,90,9,0,0,20)	(-,90,9,90,0,20)	(-,90,9,90,23,20)	(02,96,06,6,06,-)	(-,90,9,300,101,20)	(-,90,91,300,325,20)	(-,90,4,0,0,20)	(-,90,4,90,0,20)	(-,90,4,90,18,20)	(~,90,4,90,75,20)	(-,90,4,300,58,20)	(-,50,4,300,180,20)	(-,90,1,0,0,20)	(-,90,1,90,0,20)	(-,75,9,90,25,20)	
		No.	1	2	ю	ঘ	ς,	9	7	œ	6	2	=	12	13	74	15	

r																			
	REMARKS					10 PPI foam in	standoff 10 PPI foam in tank	No standoff	9" standoff backside	9" standoff backside	27" standoff backside	77" standoff backside	27" standoff backside			27" standoff with hat	section 27" standoff with hat	section	
F 177	* u		1.94	2.35	2.35		2.13		2.13	2,13	2.13	2.35	2.13	2.13	2.35				
	⊢ -		1.03	1.80	1.85		2.24		ລ	D.	1.00	01.	1.00	1.62	0.02				
	С Ц. 4	7a c 1 c	3.6	بى ق	16.4		322.0		:>	5	∍	<u>:</u>	ח	24.6	1.02				
	(X)	JP-8	269	380	422		47.7		0	٥	1.7	150	122	119	217				
INUEO)	MEAN	JP-4	397	249	218	Data	169		0	0	Ç	129	0	315	215	Data	Data		
TABLE I (CONTINUED)	(a ²)	JP-8	\$3,003	13,945	4,722	Insufficient	176	N/A	0	0	8.3	45,600	44,652	42,245	35,557	Insufficient	Insufficient		
TAB	VARIANCE (0 ²)	JP-4	13.318	2,473	288	Insuf	56,785		0	0	0	50,181	0	1.716	34,961	Insuf	Insuf		
		3P-8	٠,	~:	m		(i)	m	m	ო	m	23	r:	(r)	r)				
	ii.	4 dt	4	က	2		m	3	m	က	m	т	9	m	т				
	+	lest Description & b c d e f	(-,90,9,96,23,15)	(-,75,9,90,97,20)	(51,78,90,9,0,-)	(-,90,4,90,18,20)	(-,90,4,90.18,15)	(02,0,00,00,0,-)	(51,0,06,86,06,-)	(-,90,98,90,23,15)	(-,90,278,90,0,15)	(-,90,278,90,7,15)	(-,90,278,90,33,15)	(-,90,27,90,0,75)	(90,27,90,7,15)	(-,96,27H,90,0,15)	(-,90,27H,90,4,15)		
	4	.05	16	17	18	13	02	2.1	67	23	24	52	26	27	38	29	30		

 $^{\dagger}_{\rm C}$ = T value at 55.0% (10% error - two tail)

Values showing statistical differences

ló

TABLE II INCENDIARY BURN TIMES IN STANDOFF FOR JP-4 vs. JP-8 FUELS (MSEC)

REMARKS	•															
*	,	1.83	1,83	1.83	1.86	1.81	1.86	1.81	1.83	1.86	1.90	1.94	1.94	1.90	2.02	2.35
!		2.40**	2.66	1.69	2.48	2.10	.97	4.63	3.53**	1.42	.22	5.66**	2.43**	0.78	2.14**	96.0
L	Ratio	20.4	1.4	14.9	186.9	29.1	2.6	2.2	370.8	7.9	=	2	3.2	2.1	127.5	1.0
MEAN (X)	JP-8	53	52	14	7	13	27	,	c o	7	Ξ	3	15	33	5	æ
MEAN	JP-4	7	22	œ,	23	ω	20	32	25	10	10	7	ō,	47	12	10
E (0 ²)	JP-8	459	437	64	0.7	35	234	37	0.4	2	30	0.7	16	835	0.7	V
VARIANCE (0 ²)	JP-4	23	306	4	125	_	89	82	148	17	8	-	5	393	86	ιΩ
	JP-8] ເກ	3	Z.	47	9	Ą	٠	φ	ъ	*3	4	4	S	41	ю
E	JP-4	Q	ų.	9	9	9	9	9	r.	2	S	4	4	۷,	က	2
Test	Description a b c d e f	(-,90,9,0,20)	(-,90,9,52,0,20)	(-,90,9,90,23,20)	(-,90,9,90,96,20)	(-,90,9,300,101,20)	(-,90,9,300,325,20)	(90,4,0,0,20)	(-,90,4,90,0,20)	(-,90,4,90,18,20)	(-,90,4,90,75,20)	(-,90,4,300,58,20)	(90,4,300,180,20)	(02,0,0,1,06,-)	(-,90,1,90,0,20)	(-,75,9,90,23,20)
	<u>원</u>	-	7	ო	44	2	8	۲۰,	∞	6	2.		12	<u>ت</u>	4.	15

TABLE II (CONTINUED)

	Test	c		VARIANCE (02)	ε (σ²)	MEAN (X)	×	LL.	 	*	REMARKS
Ş	Description a b c d e f	JP-4	JP-8	. P-4	JP-8	JP-4	JP-8	Ratio		,	
16	(-,90,9,90,23,15)	4	4	23	65	10	8	1.6	1.44	1.94	
17	(-,75,9,90,97,20)	cή	2	0.3	13	12	10	37.5	1.13	2.35	
38	(-,90,9,90,97,15)	m	e	rų.	4	7	œ	6.1	0.22	2.13	
19	(-,90,4,90,18,20)			Insuff	Insufficient	Data					10 PPI foam in
50	(-,90,4,90,18,15)	က	3	2	1	7	8	2.3	.63	2.13	10 PPI foam in tank
21	(-,90,0,90,0,20)				N/A			L			No standoff
22	(-,90,98,90,0,15)	т	က	0	0	0	0	5		2.13	9" S.O. backside
23	(-,90,98,90,23,15)	ო	3	0	0	o	0	Þ	Ð	2.13	9" S.O. vackside
24	(-,90,278,90,0,15)	m	m	0.3	0.3	0.3	2	1.0	2.83	2.13	27" S.O. backside
25	(-,90,278,90,7,15)	m	2	7	.5	3	4	14	.25	2.35	27" S.O. backside
92	(-,90,278,90,33,15)	2	2	8	0	2	0	n	1.0	2.92	27" S.O. backside
27	(-,90,27,90,0,15)	m	60	,	19	7	5	14.3	06.0	2.13	
82	(-,90,27,90.7,15)	ო	3	91	е.	4	ব	49	00	2.13	
56	(-,90,27H,90,0,15)		_ 3:	Insufficient		Data					27" standoff with
30	(-,90,27H,90.4,15)			Insufficient		Data					27" standoff with hat section
*	= T value at 95.0% {1	10% er	ror - t	O% error - two tail)							
** **	[*] ∀alues showing statistical difference	cal di	fferenc	Q							

1917年,1918年,1918年,1918年,1918年,1918年,1918年,1918年,1918年,1918年,1918年,1918年,1918年,1918年,1918年,1918年,1918年

TABLE III

INITIAL EXTERNAL FUEL SPRAY TIME FOR JP-4 vs. JP-8 FUEL (MSEC)

	Test	=		VARIANCE (02)	$\langle \sigma^2 \rangle$	MEAN	MEAN (X)	L	-	*,-	REMARKS
<u>چ</u>	Description abcdef	JP-4	JP-8	JP-4	JP-8	JP-4	JP-8	Ratio		,	
_	(-,90,9,0,20)	'n	Z.	9,435	241,065	66	1,028	25.6	4.15**	1.86	
2	(-,90,9,90,0,20)	2	\$	141,879	88,872	401	532	1.6	19.0	1.86	
m	(-,90,9,90,23,20)	т	2	25,541	242	219	316	105.5	.82	2.35	
4	(-,90,9,90,96,20)	9	4	10,178	25	126	34	407.1	1.80	1.86	
ß	(-,90,9,300,101,20)	9	و	7,131	5,801	121	126	1.2	נו.0	1.81	
9	(-,90,9,300,325,20)	9	ý	25,902	684	121	103	37.9	.22	1.86	
۲	(-,90,4,0,0,20)	9	9	50,244	187,793	309	587	3.7	1.40	1.81	
œ	(-,90,4,90,0,20)	2	9	49,197	43,620	249	845	1.1	4.59	1.83	
6	(-,90,4,90,18,20)	φ	٠	180	3,209	[9	57	17.8	0.15	1.81	
9	(-,90,4,90,75,20)	2	4	3,930	9,559	86	191	2.4	1.97**	1.90	
11	(-,90,4,300,58,20)	4	2	321	0	39	22	n	1.23	2.13	
12	(-,90,4,300,180,20)	*4	4	172	506	52	37	1.2	0.82	1 94	
13	(-,90,1,0,0,20)	4	ĸ	1,444	523	19	35	2.8	0.78	1.90	
14	(-,90,1,90,0,20)	m	4	508	110,257	46	312	217	1.35	2.02	
15	(-,75,9,90,23,20)		က	ם	148,933	234	763	ə	n	2.92	

TABLE III (CONTINUED)

B JP-4 JP-B Ratio 276 664 U U S ,449 639 843 1.7 0.59 2 76,072 552 2,026 95 1.48 2 78 172 113 6.5 0.64 2 t Data 0 0 U U U 2 0 0 U U U 2 0 0 U U U 2 t Data t Data t Data t Data t Data t Data		Test			VARIANCE (02)	(o ²)	MEAN	MEAN (X)	L	⊢	* ,	REMARKS
(-,90,9,90,23,15)	No.	Description a b c d e f	JP-4	JP-8	JP-4	JP-8	JP-4	JP-8	Ratio		,	5
(-,90,90,97,20) 3 3 132,933 221,449 639 843 1.7 0.59 2.13 (-,90,90,97,15) 2 2 20,808 1,976,072 552 2,026 95 1.48 2.92 (-,90,4,90,18,15) 3 2 14,196 2,178 172 113 6.5 0.64 2.35 (-,90,4,90,18,15) 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.6	(-,90,9,90,23,15)	ų		2,798	n	276	604	Ð	Þ	2.35	
(-,90,4,90,15) 2 2 20,808 1,976,072 552 2,026 95 1.48 2.92 (-,90,4,90,18,20) 3 2 14,196 2,178 172 113 6.5 0.64 2.35 (-,90,4,90,18,15) 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17	(-,75,9,90,97,20)	۳)	C 1	132,933	221,449	639	843	1.7	0.59	2,13	
(-,90,4,90,18,15) 3 2 14,196 2,178 172 113 6.5 0.64 2.35 (-,90,4,90,18,15) 3 3 0 0 0 0 0 0 0 2.13 (-,90,98,90,0,15) 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	82	(31,76,96,9,06,-)	~	2	20,808	1,976,072	552	2,026	95	1.48	2.92	
(-,90,4,90,18,15) (-,90,090,00,20) 3 3 0 0 0 0 0 0 2.13 (-,90,98,90,23,15) 3 3 0 0 0 0 0 0 0 2.13 (-,90,278,90,0,15) 3 3 0 0 0 0 0 0 0 2.13 (-,90,278,90,7,15) 3 3 0 0 0 0 0 0 0 2.13 (-,90,278,90,7,15) 1 Insufficient Data (-,90,274,90,4,15) 1 Insufficient Data (-,90,274,90,4,15) 1 Insufficient Data (-,90,274,90,4,15)	19	(-,90,4,90,18,20)	m	2	14,196	2,178	172	113	6.5	0.64	2.35	10 PPI foam in
(-,90,98,90,0,15) 3 3 0 0 0 0 0 0 0 0 2.13 (-,90,98,90,23,15) 3 3 0 0 0 0 0 0 0 0 0 2.13 (-,90,278,90,0,15) 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20	(-,90,4,90,18,15)			Insuff		ata					standorr 10 PPI foam in tank
(-,90,98,90,0,15) 3 3 0 0 0 0 0 0 0 2.13 (-,90,278,90,0,15) 3 3 0 0 0 0 0 0 0 2.35 (-,90,278,90,7,15) 3 3 0 0 0 0 0 0 0 2.35 (-,90,27,90,7,15) 3 3 0 0 0 0 0 0 0 2.35 (-,90,27,90,7,15) Insufficient Data	12	(-,90,0,90,0,20)	3	3	0	0	0	0	5	ח	2.13	No standoff
(-,90,278,90,0,15) 3 3 0 0 0 0 U U 2.13 (-,90,278,90,0,15) 3 2 0 0 0 0 U U 2.35 (-,90,278,90,7,15) 3 3 0 0 0 0 U U 2.35 (-,90,27,90,0,15) Insufficient Data (-,90,27,90,0,15) Insufficient Data (-,90,27,90,0,15) Insufficient Data (-,90,274,90,0,15) Insufficient Data	22	(-,90,98,90,0,15)	က	е	0	0	0	C	-	n	2.13	9" standoff
(-,90,278,90,0,15) 3 3 0 0 0 0 0 0 0 0 2.13 (-,90,278,90,7,15) 3 2 0 0 0 0 0 0 0 0 2.35 (-,90,27,90,0,15)	23	(-,90,98,90,23,15)	m	т	0	0	0	0	n	ກ	2.13	Dackside 9" standoff
(-,90,278,90,7,15) 3 5 0 0 0 0 0 0 0 2.35 (-,90,272,90,0,15) Insufficient Data (-,90,27,90,0,15) Insufficient Data (-,90,274,90,4,15) Insufficient Data (-,90,274,90,4,15) Insufficient Data	24	(-,90,278,90,0,15)	65	e	0	0	0	0	-	>	2.13	packside 27" standoff
(-,90,272,90,33,15) 3 3 0 0 0 0 0 0 2.13 27" standoff backside [-,90,27,90,0,15) Insufficient Data [-,90,27,90,7,15] Insufficient Data [-,90,27,90,0,15] Insufficient Data [-,90,27H,90,0,15] Insufficient Data [-,90,27H,90,4,15] Insuff	25	(-,90,278,90,7,15)	3	S.	0	0	0	ပ	>	Ð	2.35	backside 27" standoff backside
(-,90,27,90,0,15)	52	(-,90,272,90,33,15)	æ	3	0	0	0	0	a	Ω	2.13	27" standoff
(-,90,27,90,7,15) Insufficient Data (-,90,27H,90,0,15) Insufficient Data (-,90,27H,90,4,15) Insufficient Data (-,90,27H,90,4,15) Insufficient Data hat section	27	(90,27,90,0,15)			Insuff		ata	·				backside
(-,90,27H,90,0,15) Insufficient Data (-,90,27H,90,4,15) Insufficient Data (-,90,27H,90,4,15) Insufficient Data Association	28	(-,90,27,90,7,15)		_	Insuff		ata					
(-,90,27H,90,4,15) Insufficient Data 77" standoff hat section	53	(-,90,27H,90,0,15)			Insuff		ata					
	<u>2</u>	(-,90,27H,90,4,15)			Insuff		ata					

 $^*T_c = T \text{ value at 95.0% (10% error - two tail)}$

** Values showing statistical difference

TABLE IV TIME TO MAXIMUM STANDOFF PRESSURE FOR JP-4 vs. JP-8 FUEL (MSEC)

AFACL-TR-	-72-8	3															
	REMARKS																
MSEC.)	*	,	1.90	1.83	1.86	1.86	1.83	1.90	1.86	2.35	1.83	1.90	1.94	1.94	•		2.35
-8 FUEL (۰		17.0	1:1	0.35	0.94	0.41	2.00	1.48	1.81	2.52	2.27	0.53	0.42			0.53
-4 vs. JF	la.	Ratio	2.3	1.9	1.3	10.0	7.6	157.2	89.3	13.5	12.9	2.8	53.2	1.5			6.0
E FOR JP	(%)	JP-8	88	77	36	81	53	92	76	27	101	44	83				9
TABLE IV NDOFF PRESSUA	MEAN	J?-4	85	55	33	35	32	35	23	20	58	83	33	22	Data	Data	48
TABLE IV TO MAXIMUM STANDOFF PRESSURE FOR JP-4 vs. JP-8 FUEL (MSEC)	(°c)	£-4j	1,824	700	226	78	40	.33	6,967	41	105	329	461	2,444	Insufficient	Insufficient	16
I'WE TO MAXIP	VARIANCE	\$ "d."	4,203	1,350	262	783	305	52	7.8	m	1,353	927	6	1,622	Insuf	Insuf	545
Ĭ.		9-9	.n	70	٠	4	5	3	락	2	ις	4	44	4			m
	=	3P-4 3P-9	.,	vo	'n	٥	9	9	9	ო	vo	5	4	4			2
	Test	Description a product of	(-,36,7,0,326,	(-,50,5,30,0,20)	(90,9,90,20,20)	(-,90,9,90,96,20)	(-,90,9,300,101,20)	(-,90,9,300,325,20)	(-,90,4,0,0,20)	(-,90,4,90,0,20)	(-,90,4,90,18,20)	(90,4,90,75,20)	(~,90.4,300,58,20)	(-,90,4,300,180,20)	(-,90,1,0,0,20)	(-,90,1,90,0,20)	(-,75,9,90,23,20)
		ž	} L	٠٠.	m	**	ഹ	9	_	8	ο,	2	=	22	13	14	15

TABLE IV (CONTINUED)

	Test	د		VARIANCE (02)	(°2)	MEAN	(X)	L.	}- -	*	REMARKS
No.	Description a b c d e f	JP-4	9dC	JP-4	JF-8	JP-4	JP-8	Ratio)	
16	(-,90,9,90,23,15)	4	च	96	355	28	43	3.7	1.41	1.94	
17	(-,75,9,90,97,20)	ო	m	21,	٥,	53	47	9.	1.91	2.13	
<u>8</u>	(51,76,06,9,06,-)	m	m	21	35	46	25	14.1	2.06	2.13	
<u>6</u> ,	(-,90,4,90,18,20)				Insufficient	icient	Data				10 PPI foam in
20	(-,90,4,90,18,15)	ردر	Ð	14	2	37	35	6.1	0.57	2.13	standort 10 PPI foam in tank
21	(02,0,09,90,-)	3	ю		N/A						No standoff
22	(-,90,98,90,015)				Insufficient	icient	Derta				9" standoff backside
23	(-,90,98,90,23,15)				Insufficient		Data				9" standoff backside
24	(-,90,278,90,0,15)				Insufficient		D: ta				27" standoff backside
25	(-,90,278,90,7,15)	_	_	ກ	Þ	98	79	n	n	n	27" standoff backside
56	(-,90,278,90,33,15)	0	-	Ω	a	n	316	n	Ω	ם	27" standoff backside
27	(51,0,06,72,06,-)	m	2	4,789	7,688	139	72	1.6	0.97	2.35	
28	(-,90,27,90,7,15)	2	т	1,250	5,200	103	77	4.2	0.46	2.35	
53	(-,90,27H,90,0,15)	2	m	1,152	6,480	147	771	5.6	0.48	2.35	27" standoff with hat
30	(-,90,274,90,4,15)	m	m	252	7,783	92	114	30.9	0.43	2.13	section 27" standoff with
											nat section
* [⊢]	= T value at 95.0% (10% error - two tail)	0% err	or - tv	o tail)							
*		, ·									
	Values showing a statistical di	tical d	ifference	ce							

TABLE V

	REMARKS														·		
	* ·	,	1.90	1.83	1.83	1.85	1.83	1.90	1.81	1.83	1.83	1.90	1.94	1.94	2.02	1.94	2.35
x 10)	⊢		1.83	2.05	1.43	0.46	0.87	1.20	2.05	0.10	1.29	0.25	2.33	0.72	1.37	1.82	1.49
FVEL (psf	<u>.</u>	Ratio	1.1	16.7	1.49	1.23	4.0	8.3	7.0	29.3	1.6	1.7	2.2	3.5	14.9	73.0	2.5
18. JP-8	MEAN (K)	3P-8	801.	102	82	L 9	26	102	61.	.44	25	גי	19	54	0 0	24	22
CR JP-4 v	MEAN	16-4£	622	231	25	15	64	129	250	137	04	64	45	11	LC.	6	102
URE RISE F	(a ²)	8-dC	2,569	1,115	1,299	455	325	1,185	3,076	1,088	190	1,276	156	1,748	259	268	709
MAXINUM STANDJFF PRESSURE RISE FOR JP-4 vs. JP-8 FUEL (pst x 10)	VARIANCE (02)	JP-4	18,244	18,653	870	369	82	9,856	21,473	31,889	306	2,129	7.1	2,613	17	*	008*1
HUM STAI		8-dſ	5	5	25	4	5	3	9	φ.	S.	4	44	43	4	4	(T)
MAXI	u	JP-4	7	9	9	9	5	9	9	ĸ	9	5	4	4	3	47	2
	Test	Description abcdef	(-,90,9,0,0,20)	(-,96,9,90,0,20)	(-,90,9,90,23,20)	(-,90,9,90,96,20)	(-,90,9,300,101,20)	(-,90,9,300,325,20)	(-,90,4,0,0,20)	(-,90,4,90,0,20)	(-,90,4,90,18,20)	(-,90,4,90,75,20)	(-,90,4,300,58,20)	(-,90,4,300,180,20)	(-,90,1,0,0,20)	(02,0,0,1,90,-)	(-,75,9,90,23,20)
		M		2	٣	4	2	ę	7	∞	σ	10	11	12	13	14	15

TABLE V (CONTINUED)

	Test	٤		VARIANCE (02)	(°2)	MEAN (X)	8	L	+ -	* }-	REMARKS
.	Description abcdef	JP-4	JF-8	.P-4	ეგ-8	JP-4	JP-8	Ratic		,	
16	(-,90,9,90,23,15)	4	4	120	260	28	25	2.2	01.0	1.94	
17	(-,75,9,90,97,20)	М	m	103	516	73	96	2.6	1.51	2.13	
18	(-,90,9,90,15)	ო	က	36	952	99	123	26.5	3.16	2.13	
19	(-,90,4,90,18,20)	6	æ	Ø1	0	<u>س</u>	0	-	1.89	2.13	10 PPI foam 'n
20	(-,90,4,90,18,15)	m	ю	-	6	<u>-</u>	15	7.0	2.47	2.13	10 PPI form in tank
21	(-,90,0,90,0,20)	٣	3		N/A					2.13	No standoff
22	(51,0,00,86,00,-)	m	ניז	0	0	0	0	ະນ	n	2.13	9" standoff
23	(-,90,98,90,23,15)	m	ж	0	33	0	m	>	1.00	2.13	9" standoff
24	(-,90,278,90,0,15)	m	m	0	0	0	0	-	5	2.13	27" standoff
52	(-,90,278,90,7,15)	m	2	1,412	26,912	24	116	19.1	1.02	2.35	27" standoff backside
56	(-,90,278,90,33,15)	3	3	3	265	l	Ξ	88.4	1.09	2.13	27"standoff
27	(-,90,27,90,0,15)	m	3	69	1,669	337	2.2	24.1	12.89	2.13	מפראסים
28	(-,90,27,90,7,15)	2	es	613	20	117	17	12.2	7.05	2.35	
29	(-,90,27H,90,0,15)	٣	æ	73,625	1,460	:/2	174	53.8	96.0	2.13	27" Standoff
30	(-,90,27H,90,4,15)	т	m	191,11	1,873	265	28	1.0	3.14	2.13	27" standoff with hat section
		:									
*		3		113.7					ı		
ں _	= Value at 95.0% (10% error - two tatl)	us err		o tarij			-				
** Val	** Values showing a statistical		difference	9			7.7				
											-

The state of the s

b. At high dry bay ACPM, no clear difference exists between the two fuels, although as ACPM increases, the burn times generally tend to increase for both fuels.

b. Incendiary Burn Time in Standoff (Table II)

It was not expected that incendiary burn time would be a function of fuel type. Although the statistical results show cases where it appears significant, the direction of significance was mixed. Under five test conditions the incendiary burn time was significantly longer for JP-4, and under five other test conditions it was significantly longer for JP-8. These mixed results were most likely due to our inability to read the film properly and determine the difference between incendiary burn and fuel fire. Moreover, out of the 10 test conditions where significant difference in the means is seen, as evidenced by the larger T value, 8 also show a significantly larger F value, which explains the mixed results as being due to the masking effect of the variance. In other words, the significant difference in the means is well within the variability seen in the two distributions. Thus, the difference in the means cannot prove that either JP-4 or JP-8 affected the incendiary burn time.

c. Initial External Fuel Spray Time (Table III)

This factor was the time for the fuel to be seen on the external surface of the test article, as determined from film analysis. This time would be expected to be a function of the fire in the dry bay. At the very low dry bay ACPM, the initial external fuel spray time was significantly longer for JP-8 than for JP-4. This agrees with a previous conclusion, which showed that the fire duration for JP-8 was significantly longer at very low dry bay ACPM. At high ACPM, the spray time was independent of fuel type, although it tended to decrease for both fuels as ACPM increased and standoff distance decreased.

d. Time to Maximum Standoff Pressure (Table IV)

It is possible that the time to maximum standoff pressure is dependent on fuel type. Three cases show significance, but an evaluation of all cases as a whole does not prove a dependence on fuel type. Of the 3 anomalous cases, two have a significantly larger F ratio. This explains the fact that the significant difference shown by the T value is masked by the corresponding F value.

e. Maximum Standoff Pressure Rise (Table V)

The maximum pressure in the dry bay was of major interest in the test program for assessing the difference between the two fuels. Eight cases show significance; in five of these, the higher pressures were obtained with JP-4. Data for these cases are as follows:

CASE	Test	Mean	psi
No.	Description	JP-4	JP-8
2	(-,90,9,90,0,20)	23.1	10.2
7	(-,90,4,0,0,20)	25.0	11.9
11	(~,90,4,300,58,20)	4.5	6.1
38	(-,90,9,90,97,15)	6.6	12.3
20	(~,90,8,90,18,15)	1.1	1.5
27	(-,90,27,90,0,15)	33.7	2.7
28	(-,90,27,90,7,15)	11.7	1.7
30	(-,90,27H,90,4,15)	26.5	5.8

Case 20 may be eliminated because an overpressure of 1.5 psi should be within the capability of most aircraft structures. This case was a vapor shot with 10 PPI reticulated polyurethane foam in the fuel tank, and severe foam damage occurred during all three tests with JP-4; little foam damage occurred with JP-8. Of the remaining seven cases, JP-4 produced higher pressures in five, with a mean average overpressure of 18.7 psi, compared to 7.2 for JP-8

Unfortunately, several cases had relatively high F values, which weakens the conclusion that JP-4 gives a statistically significant higher standoff pressure rise. Further analysis is required to resolve this.

Table VI presents the statistical results for the standoff overpressure for various combinations of the test conditions:

Case 3! is a comparison of the two fuels for all test conditions. Case 32 considers all "Standard Tests" (i.e., all tests with the standoff on the front side, which excludes Cases 19 thru 26). Cases 33 through 37 are a breakdown of Case 32 by size of standoff.

Case 31 (all tests) shows that JP-4 having a higher overpressure than JP-8 is a significant result. Case 32 (Standard Tests) shows a significantly higher mean overpressure for JP-4, with only a 2.5% error possible, due to experimental chance. The remaining cases of Table VI indicated that for JP-4 the overpressure increased as the volume of the dry bay increased. This trend was not observed for JP-8.

TABLE VI

(01	200	244		Sign. at 2.5% error	Front side oniv	Front side only	Front side only	1.83 Front side only	Hat section on front	
psi x	*	ပ	1.65		7.66	1.67	1.76	1.83	1.81	
MAXIMUM STANDOFF PRESSURE RISE FOR JP-4 vs. JP-P FUEL (psi x 10)	<u> </u>		1.99**	2.25**	.45	69.	2.64**	4.48	2.28**	
vs. JP-	ш	Ratio	2.47	2.65	1.14	5.76	14.6	20.7	15.7	
JP-4.	MEAN (X)	JP-4 JP-E	73	85	104	89	21	22	98	
SE FOR	MEAN	JP-4	g	118	113	106	و	249	268	
SURE RI	NCE)	JP-8	5,590	5,424	7,996	2,541	234	216	2,285	
FF PRES	VARIANCE (02)	JP-4	13,780 5,590	14,395 5,424	9,094 7,996	14,646 2,541	16	14,818	35,939 2,285	
STANDO		JP-8	112	91	42	59	8	9	9	
XIMUM	د	JP-4	126	105	55	31	8	2	w	
MA	Test Description	מים	All Tests	Standard Tests only	All 9" Standoff	All 4" Standoff	All 1" Standoff	All 27" Standoff	27" Standoff	
	<u>8</u>		33	32	33	34	35	36	37	

 *T_c = T value at 95.0% (10% error - two tail)

** Value shows statistical difference

SECTION V

ANALYSIS OF TEST RESULTS

1. TEMPERATURE EFFECT ON STANDOFF OVERPRESSURE

An initial fuel temperature of 90°F was selected as the baseline temperature for the test program. The selection of this temperature was a trade-off between the most probable operational fuel temperature, and a temperature easily controlled in a test program. It is easier to heat fuel above ambient temperature than to cool it. In addition, we felt that the severity of the reactions for JP-8 would be less at lower temperatures, and those from JP-4 would be greater. To assess the effects that initial fuel temperature could have on the test results, we conducted several tests with both fuels at 75°F. The results of these tests are given in Table VII. There is no clear statistical evidence of the effect of fuel temperature on standoff overpressure for either fuel, although JP-4 tended to produce higher overpressures at the lower temperature. No trend was observed with JP-8.

2. TANK PRESSURE EFFECT ON STANDOFF OVERPRESSURE

A baseline initial fuel tank pressure of 20 psia was used during the first half of the program, based on the operational consideration that the positive pressure in the fuel tanks of most aircraft is in the range of 1-1/2 to 15 psi. About halfway through the test program, several tests were conducted at 15 psia and the results were compared, as shown in Table VIII. There is a clear indication that the standoff overpressure is not dependent on initial tank pressure for JP-4. Case 45 was significant, showing the lower initial tank pressure for JP-8 produced the higher standoff overpressure; case 44, however, indicated the reverse, although not at a significant level. Some unique cross-coupling between initial pressure and dry bay ACPM for JP-8 may have produced this result, although the test data was too limited to come to a definite conclusion. From an overall assessment of Table VIII, we conclude that no dependence of standoff overpressure on initial tank pressure was actually proven for either fuel. The second half of the program, however, was conducted at an initial fuel tank pressure of 15 psia.

TABLE VII

! !	TEMPERAT	rure e	FFECT	ON MAXI	TEMPERATURE EFFECT ON MAXIMUM STANDOFF PRESSURE RISE (psf x 10)	DOFF PR	RESSURE	RISE (F	S: x 10	6		
	Test		۶	VARIAN	VARIANCE (σ^2)	MEAN (X)	(X)	ш	<u>-</u>		REMARKS	
	a b c d e f	75° =	75°= 90°F	3°57	90°F	75°F	90°F	Ratio		()	7	
	(4,75,9,90,23,20)	2		1800		102						7
	s _v							2.07	1.84	1 94		
	(4,90,9,90,23,20)		.0		870.4		54		·	+ •		
	(4,75,9,90,96,20)	3		201		73						
	S							1.83	0.92	1 90		
	(4,96,9,90,95,20)		ç,		369		61		 	?		
	(8,75,9,30,23,20)	c.s		709		57						
_	SA							1.83	1,03	1 94		
	(8,90,9,90,23,20)		rv.		1299		82)			
	(8,75,9,90,96,20)	٣)	†	516		96						
	22 >	/	 -					.]3	1.73	- 10 %		
	(8,90,9,90,96,20)		4		455	-	29)			
	= T value -t 95.0% (10% error - two tail	0% err	or -	two tai) <u>(</u>							

TABLE VIII INITIAL TANK PRESSURE EFFECT ON MAXIMUM STANDOFF PRESSURE RISE (psi x 10)

	Test		E	VARIANCE (02)	E (0 ²)	MEAN (\overline{X})	(X)	ا الد خ د	-	*_0	REMARKS
S	Description a b c d e f	15 psia	20 psia	15 psia	20 psia	15 ps ⁱ a	20 psia	Katho			
4.2	(4,90,9,90,23,15)	4		120		58					-
	٧٥.							7.25	0.26	1.85	
-	(4,90,9,90,23,20)		9		870		54				
43	(4,90,9,90,97,15)	3		36		99					
	٧٤.							10.3	0.43	1.90	
	(4,90,9,00,97,20)		6		369		6;				
44	(8,90,9,90,23,15)	4		260		57		·			
	, sa							5.0	1.29	1.90	
	(8,90,9,90,23,20)		5		1299		82				
45	(8,90,9,90,97,15)	٤		256		123			1		
, -	vs.	<u> </u>						5.09	2.88	2.01	
	(8,90,9,90,97,20)		44		455		29				
,	= T value at 95.0% (10% error - two tail)	(10% error	- two tail	<u>-</u>				-,			
** Va	** Value shows statistical difference	differen	G.								
·											

3. EXTERNAL AIRFLOW EFFECT ON STANDOFF OVERPRESSURE

The amount of external airflow over the test article was not expected to affect the overpressure in the standoff. Eight cases (46 - 53) where direct comparisons could be made are shown in Table IX. The statistical results verify the expected results; however, the external airflow was expected to affect the degree and type of fire outside the test article. As noted in the Remarks, all sustained external fires occurred with no external airflow. A complete list of test conditions which produced sustained external fires is given below:

TEST DESCRIPTION NO.	OF SUSTAINED EXTERNAL FIRES
(4,90,9,90,0,20)	1
(4,90,9,0,0,20)	3
(4,90,4,90,75,20)	1
(4,90,1,0,0,20)	3
(4,100,1,0,0,20)	1
(4,90,0,90,0,20)-(no standoff)	2
(4,90,27,90,0,15)	1
(4,90,27,90,4,15)	1
(4,90,27,90,7,15)	2
(8,90,27,90,0,15)	2

Sustained external fires were defined as having a duration of two seconds or longer. In most cases beyond two seconds, it was impossible to determine whether the fire was being sustained by the fuel of the test article or the fuel on the pad. When a sustained fire was noted, it was standard test procedure to increase the external airflow to about 200 knots and wait 30 seconds, which extinguished the fire in about 50% of the cases. In the remaining cases, the Fire Department extinguished the fire after about 5 minutes elapsed time with zero airflow.

Out of a total of 34 tests with no external airflow, 7 resulted in sustained external fires; of 174 tests conducted with 90 knots external airflow, 10 sustained external fires; of 6 tests conducted at 125 knots and 38 tests conducted at 300 knots external airflow, none sustained external fires. From this we concluded that the probability of sustained external fires occurring outside the test article was reduced as external

TABLE IX EXTERNAL AIR FLOW EFFECTS ON MAXIMUM STANDOFF PRESSURE RISE (psi x 10)

	Test	c		VARIANCE (02)	E (0 ²)	MEAN (X)	(X)	14	F	*-	REMARKS
ટ્ર	Description a b c d e f							Ratio		υ	
46	(4,90,9,0,0,20)	4		18244		523					2 S.E.F** at 0 knots
	vs.	,						1.02	0.02	1.86	O S.E.F. at 90 knots
	(4,90,9,90,0,20)		9		18653		231				
47	(4,90,9,90,96,20)	9		369		19					O S.E.F. at 90 knots
	·s^							4.5	0.31	1.81	O S.E.F. at 300 knots
	(4,90,9,300,101,20)		9		82		64				
48	(4,90,4,0,0,20)	9		21473		250			!		O S.E.F. at O knots
	vs.							1.49	1.16	1.83	0 S.E.F. at 90 knots
	(4,90,4,90,0,20)		z,		31889		137				
49	(4,90,1,0,0,20)	m		17		5					3 S.E.F. at 0 knots
	vs.							4.7	1.66	2.01	
	(4,96,1,90,0,20)		₹		4		6				O S.E.F. at 90 knots
20	(8,90,9,0,0,20)	2		5269		108					O S.E.F. at O knots
	vs.							2.3	0.21	1.86	
	(8,90,9,90,0,20)		5		1115		102				0 S.E.F. at 90 knots

TABLE IX (CONTINUED)

	Test	د		VARIANCE (0 ²)	E (0 ²)	MEAN (X)	(X)	Ļĸ.	-	*1	REMARKS
e	a b c d e f							Ratio		٠	
51	(8,90,9,90,96,20)	4		455		19					O S.E.F. at 90 knots
	· s›							1.4	0.81	1.90	
	(8,90,9,300,101,20)		យ		325		56				0 S.E.F. at 300 knots
55	(8,90,4,0,0,20)	9		3075		6t i					O S.E.F. at G knots
	vs.							2.8	0.94	1.81	
	(8,90,4,90,0,20)		9		1083		144				0 S.E.F. at 90 knots
53.	(8,90,1,0,0,20)	4		259		81					0 S.E.F. at 0 knots
	٧\$.					-		1.0	0.48	1.94	
	(8,90,1,90,0,20)		4		268	-	24				0 S.E.F. at 90 knots
* * * * * * * * * * * * * * * * * * *	[*] T _c = I value at 95.0% (10% error **S.E.F. Sustained External Fire	<u> </u>	- two tail)	(1							

airflow increased. It should be noted that out of a total of 133 tests with JP-4 fuel, 15 sustained external fires, whereas out of 119 tests with JP-8, only 2 sustained external fires.

4. EFFECT OF VOID SPACE AIR CHANGES PER MINUTE ON STANDOFF OVERPRESSURE

The ACPM in the standoff was varied over a wide range of test conditions for both fuels. Results indicated the following.

For zero ACPM, the void space was essentially a sealed container. For the tests with a positive ACPM, the void space was modified to accept ram air from the external airflow and to dump the exit air overboard. Figures 5, 6, and 7 show the resulting void space overpressure as a function of ACPM for both JP-4 and JP-8 in four different test articles. The case numbers are shown for reference to test conditions presented previously. Some of the plotted points are a combination of cases, since the test conditions were similar except for the external airflow, and this, as indicated previously, had little effect on overpressure.

After reviewing these figures and considering the standard deviation (σ) , we determined that the conditions for the tests listed in Table X should be analyzed for statistical significance. Based on the information of Table X, we noted the following:

- a. For JP-4 in the 9 inch standoff, there was a large decrease in overpressure at moderate ACPM (23 to 100) compared to that at zero ACPM. No positive comparative statement can be made for the high ACPM (325).
- b. For JP-2 in the 9 inch standoff, there was a small decrease in overpressure at moderate ACPM (~100) compared to that at zero ACPM. The maximum overpressure occurred at the high ACPM (325).
- c. In the 4 inch standoff, both JP-4 and JP-8 experienced a decrease in overpressure at moderate ACPM (18 to 180) compared to that at zero ACPM.

Figure 5. Overpressure vs. ACPM for JP-4 and JP-8 Fuels in 9-Inch Standoff

Figure 6. Overpressure vs. ACPM for JP-4 and JP-8 Fuels in 4-Inch Standoff

Figure 7. Overpressure vs. ACPM for JP-4 and JP-8 Fuels in 27-Inch and 27H Standoff

TABLE X
EFFECT OF ACPM ON MAXIMUM STANDOFF PRESSURE RISE
(psi x 10)

		u		VARIANCE (02)	(02)	MEAN	(X)	u.	1-	+	REMARKS
Š.	Description							Ratio		U	
54	JP4, Cases 182 vs 3	01	ص	16446	870	. 231	54	18.9	3.28	1.76	
55	JP4, Cases 182 vs 4%5	10	12	16446	207	231	62	79.4	4.53	1.72	
29	JP4, Cases 182 vs 6	10	و	16446	9855	231	129	1.7	1.66	1.76	1
23	JP8, Cases 182 vs 485	10	6	1649	364	301	6	4.5	2.96**	1.74	
28	JP8, Cases 142 vs 6	10	3	1646	1185	105	201	1.4	3.70**	1.80	
29	JP8, Cases 485 vs 6	6	3	364	1185	19	201	3.3	10.83	1.83	
09	JP4, Cases 7&8 vs 9	=	9	26985	306	199	40	88.3	2.33**	1.75	
23	JP8, Cases 748 vs 9	12	5	2059	190	132	52	10.8	3.79**	1.75	
62	JP4, Case 27 vs 28	က	(2	69	612	337	117	8.8	15.29**	2.35	
63	JP8, Case 29 vs 30	ю	æ	1460	1873	174	58	1.3	1.69	2.13	
*;-`	* i $_c$ = 7 value at 95.0% (10% error	error -	two tail)	_							
**	*Value shows statistical difference	fference									

- d. In the 27 inch standoff, JP-4 experienced a large decrease in overpressure with small ACPM compared to that at zero ACPM, but in the 27 inch H Standoff experienced no difference between small ACPM and zero ACPM.
- e. In the 27 inch and 27 inch H standoffs, JP-8 experienced no significant difference between zero ACPM and the small ACPM.

The foregoing statements apply to specific tank configurations and therefore are of little general value. We attempted to obtain more information by assuming that the amount of fuel entering the dry bay was to some degree independent of tank configuration, and that the volume of airflow in the dry bay determined the size of the flammability region and therefore the overpressure. Figure 8 gives the results of the effort and Table XI the statistical information. This analysis provided little additional insight, although it showed that at an airflow of 60 to 80 ft³/min, JP-4 reached a peak of overpressure whereas JP-8 hit a minimum. These airflows should be considered in any additional testing to determine the effect of airflow on dry bay overpressure.

5. DAMAGE POTENTIAL

Considering standoff overpressure as the critical parameter for comparing the two fuels was predicated on potential damage to the aircraft structure and danger of implosion of a fuel tank. In general, fuel tanks are designed to withstand a higher internal than external overpressure. Figure 9 was developed for the "Standard Test Conditions" to show the probability of a given overpressure or greater occurring as a function of overpressure. As may be seen, the probability of JP-4 is higher than for JP-8, particularly in the range of 10 to 40 psi. This figure, however, does not tell the complete story; the first step in arriving at a Total Damage Potential term requires that the probability distribution for the standoff overpressure for each fuel be established. Figure 10 gives the probability distribution developed from a histrogram of the test data. By definition, the total probability must be unity, therefore the area for the two fuels must be equal.

Figure 8. Overpressure vs. Air Flow in Standoff

TABLE XI AIR FLOW EFFECT ON MAXIMUM STANDOFF PRESSURE RISE

										- ' / ¥		
ź	Test	נ		VARIANC	VARIANCE (0 ²)	HEAN	(X)	14.	} -	* +-	REMARKS	
	מייים וייים							Ratio		U		•
64	JP4, Cases 182 vs 788	٥١	=	16446	26985	231	199	1.6	0.73	1.73		
65	JP4, Cases 7&8 vs 13&14	=	^	26985	12	199	7	2285.	3.06	1.75		
99	JP4, Cases 142 vs 27	01	8	16445	69	231	337	237.2	1.40	1.80		
29	JP4, Case 27 vs 29	ო	٣	69	78625	337	172	1134.	0.58	2.13		
89	JP4, Case 3 vs 9	9	9	870	306	54	40	2.9	1.04	1.81		
69	JP4, Case 9 vs 28	ω	2	306	613	64	711	2.0	4.99	1.94		
70	JP4, Case 28 vs 30	2	m	513	1911	711	256	18.3	1.86	2.35		
	JP8, Cases 1&2 vs 7&8	10	12	1646	2059	105	132	1.3	1.44	1.72		
72	JP8, Cases 788 vs 15814	12	œ	2059	234	132	23	8.8	6.52	1.74		
73	JP8, Cases 182 vs 27	10	m	1646	1669	105	27	1.0	3.41**	1.80		
74	JP8, Case 27 vs 29	n	_ا	1669	1460	27	1:4		3.82	2.13		
75	JP8, Case 3 vs 9	ឃ	S	1299	190	82	52	6.8	1.75	1.86		
76	JP8, Case 9 vs 28	5	ო	190	50	52	17	3.8	3.96**	1.94		
77	JPB, Case 28 vs 30	m	m	1873	50	23	17	37.2	1.61	2.13		
* L	T value at 95.0% (10%	error -	error - two tail)						7	7		
*	Values show statistical difference	ference										

Since the force acting on a surface that tends to produce failure is proportional to the overpressure, a Damage Potential term (DP $_{\Delta P}$) may be defined for each overpressure. The point to be made here is that a high overpressure will result in more damage to the aircraft than a smaller overpressure. With this assumption, DP $_{\Delta P}$ was defined as P $_{\Gamma}\Delta P$, and the results are shown on Figure 11. A total Damage Potential may then be defined as a function of safe overpressure; the safe overpressure is dependent on the design of a particular tank and is defined as the pressure below which no damage occurs. The total Damage Potential

(TDP) therefore is:
$$\Delta P_{\omega}$$
 ΔP_{∞}

TDP = $\sum_{\Delta P_{Safe}} DP_{\Delta P}$ or $\sum_{\Delta F_{Safe}} P_r \Delta P$

The results of this calculation are shown in Figure 12. JP-4 has a higher potential for damage than does JP-8, which was verified by the test article damage experienced during the test program.

The ratio of percentage of damage to the test article by JP-4 vs. that by JP-8, as given in Table XII, was 2.39. The ratio of area under the curves of Figure 12 for the two fuels was 2.45. The closeness of this comparison was somewhat surprising. Although there is no absolute measure for damage potential, these results should give a good relative measure for the two fuels.

Figure 9. Probability of a Given Overpressure or Greater Occurring

Figure 10. Probability Distribution for Standoff Overpressure

Figure 11. Specific Damage Potential for Each Standoff Overpressure

Figure 12. Total Damage Potential vs. Safe Standoff Overpressure Limit

6. OTHER FACTORS

Table XII summarizes results for factors not previously discussed. Of particular interest is that twice as many external flash fires occurred with JP-8 than with JP-4, whereas over six times as many sustained external fires occurred with JP-4.

Although all the test articles were constructed of heavy gauge steel and were designed for repeated gunfire testing, several failures did occur. There was a significantly larger number of tank failures associated with the JP-4 shots than with JP-8. These failures (16 with the JP-4 and 6 with JP-8) included blowing off the strike-plate, (which is equivalent to failure of the external skin of the aircraft), broken tank pressurization line, failure of the void space exhaust ventilation tube, and structural damage to the basic test article.

Another factor not discussed previously was the pressure rise in the fuel tank. No overpressure was observed for either fuel due to a fuel reaction inside the fuel tank; this was expected due to the design of the experimental program. This is not to say that no overpressures were measured in the fuel tank, but that the overpressures measured resulted from projectile dynamics and not from fuel reactions, as expected. The statistical results for the fuel tank overpressure are as follows:

	JP-4	<u>JP-8</u>
No. of Tests	105	89
Mean Overpressure (psi)	2.61	2.29
Variance (psi)	39.1	20.4
F ratio	1.	91
T value	0.	40

TABLE XII

SUMMATION OF RESULTS

	<u>.</u> .	ე8	J.	JP-4
	Test	36	Test	ş
Total Number of Tests	119		133	
Tests With Unknown or Unrecorded External Fires	•	0.00	0	0.00
Tests That Result in No External Fire	102	85.71	110	82.73
Summation of Flash, And Flash And Pit Fires (Less Than 2 Seconds)	15	12.61	ω	6.02
Summation of Sustained Fires, Delayed Fires, And Fires And Explosions	2	89.	15	11.28
Tests That Resulted in External Fires				
Flash Fire (Less Than 2 Seconds)	15	12.61	80	6.02
Flash And Pit Fire	0	0.00	0	0.00
Delayed Fire	0	0.00	0	0.00
Fire And Explosion	0	0.00	0	0.00
Sustained Fire (Greater Than 2 Seconds)	2	1.68	15	11.28
Tests That Resulted in Internal Fires				
Unknown Internal Reaction	13	10.92	ω	6.02
No Internal Reaction	17	14.29	18	13.53
Reaction In Fuel Tank Only	0	00.0	0	0.00
Reaction In The Entrance Standoff	83	69.75	105	78.95
Reaction In The Standoff + Fuel Tank	2	1.68	,	.75
Reaction In The Exit Standoff	4	3.36	-	.75
Reaction In The Exit Standoff " Fuel Tank	0	0.00	0	0.00
ïsst Art⁺cle Damage	9	5.04	16	12.03

SECTION VI

CONCLUSIONS

- 1. At very low dry bay ACPM, the standoff fire duration was longer for JP-8 than for JP-4. There was no clear difference between the two fuels at high ACPM.
- 2. The incendiary burn time of the CAL .50 API was not affected by fuel type.
- 3. At very low dry bay ACPM, the time for the JP-8 fuel to be seen on the external surface of the test article was longer than for JP-4. At high ACPM the time was independent of fuel type.
- 4. The time to maximum standoff overpressure was independent of fuel type.
- 5. Thirty different sets of test conditions were evaluated for each fuel, and in 7 of these a significant difference occurred in the standoff overpressure between the two fuels. For these seven cases, JP-4 had a mean value of 18.7 psi as compared to 7.2 psi for JP-8.
- 5. For the "Standard Tests" (i.e., all tests with the standoff on the front side) JP-4 gave higher standoff overpressure than JP-8 at the 97.5% confidence level. The mean value was 11.8 psi for JP-4 and 8.5 psi for JP-8.
- 7. For the vapor shots with 10 ppi reticulated polyurethane foam in the fuel tank, severe foam damage occurred with all three JP-4 tests, whereas little damage occurred with the three JP-8 tests.
- 8. The effectiveness of 10 ppi reticulated polyurethane foam in the 4-inch standoff in preventing dry bay overpressure and fire was the same for both fuels.

- 9. The fire and dry bay overpressure conditions were more severe when the dry bay was located on the entrance side than on the exit side. This was true for both fuels. As the distance the projectile traveled in the fuel prior to impacting the exit dry bay increased, the amount of fire and overpressure decreased. During all tests in this program, maximum incendiary action occurred at initial projectile impact; therefore the vulnerability of exit dry bays requires additional investigation.
- 10. There was no clear statistical proof of the dependence of standoff overpressure on fuel temperature (75°F vs. 90°F) for either fuel, although a trend was indicated for JP-4 to produce higher overpressures at lower temperature.
- 11. No dependence of standoff overpressure on initial tank pressure (15 psia vs. 20 psia) was proven for either fuel.
- 12. Although some information was generated on the effect of dry bay ACPM on overpressure for specific test articles, no general conclusions were established.
- 13. An analysis of the standoff overpressures showed that, on the average, the damage potential of JP-4 was 2.45 times that of JP-8. Actual test article damage experience during the test program resulted in a value of 2.39.
- 14. Sustained external fires occurred in 11.28% of the tests with JP-4 and in only 1.68% for JP-8.
- 15. The general conclusion of this program was that JP-8 is less susceptible to fire and explosion induced by gunfire and structural damage should be less than that with JP-4. Many other factors, however, must be considered in the determination of the overall desirability of JP-8. A report on this subject is planned for the near future.

APPENDIX I

TEST RESULTS

The following codes were used in the test results given in this appendix.

CODE	DEFINITION
2	TYPE OF TEST STATIC TEST WITH AIR VELOCITY (FAA TEST)
4 00 800	TYPE OF FUEL JP4 JP8 (118 DEG FLASH)
30 31 32	TANK TYPE FAA TANK-30 GAL (27 IN. STANDOFF AT ENTRANCE) FAA TANK-30 GAL (27 IN. STANDOFF AT EXIT) FAA TANK-30 GAL (27 IN. STANDOFF AT ENTRANCE WITH 10 CU. FT. HAT SECTION)
80 81 106 130 135	FAA TANK-80 GAL (9 IN. STANDOFF AT ENTRANCE) FAA TANK-80 GAL (9 IN. STANDOFF AT EXIT) FAA TANK-106 GAL (4 IN. STANDOFF AT ENTRANCE) FAA TANK-130 GAL (1 IN. STANDOFF AT ENTRANCE) FAA TANK-135 GAL (NO DRY BAY)
11 22	TRAJECTORY PHASES VAPOR LIQUID
	SECOND TEMPERATURE TYPE 2 TEST - AMBIENT AIR TEMPERATURE
*	FUEL AND SECOND TEMPERATURE INDICATES TEMPERATURE APPROXIMATE
42 73	STRIKER PLATE TYPE 2024-T3 ALUMINUM 2024-T3 ALUMINUM + TOPPI EXTERNAL FOAM
5 3	PROJECTILE TYPE 50 CAL. API
*	PROJECTILE VELOCITY INDICATES VELOCITY APPROXIMATE
700 20 0	TANK FILLER NONE R.P. FOAM 10 PPI

CODE	DEFINITION
1 2 3 4 5 6 7	EXTERNAL FIRE TYPES (FIRE TYPE) NO FIRE FLASH FIRE (LESS THAN 2 SECONDS) SUSTAINED FIRE DELAYED FIRE FLASH AND PIT FIRE FIRE AND EXPLOSION UNKNOWN REACTION
-1	INITIAL TANK PRESSURE (PSIA) INDICATES UNKNOWN INITIAL TANK PRESSURE
-1	MAIN TANK PRESSURE RISE (PSI) INDICATES UNKNOWN PRESSURE RISE
- -	TIME TO MAXIMUM PRESSURE RISE MAIN TANK (SECONDS x 100) INDICATES UNKNOWN TIME TO MAXIMUM PRESSURE RISE
1 2 3 4 5 6 7 8	INTERNAL REACTION (INT REA) UNKNOWN REACTION NO REACTION FUEL TANK REACTION ENTRANCE STANDOFF REACTION ENTRANCE STANDOFF & FUEL TANK REACTION EXIT STANDOFF REACTION EXIT STANDOFF & FUEL TANK REACTION LARGE SUSTAINED FIRE (GREATER THAN 2 SECONDS)
-1	CRITERIA I INDICATES UNKNOWN CRITERIA VALUE
1 2 3 4 5 6 7 8	INCENDIARY FUNCTION STANDOFF (YES) TANK (YES) EXTERNAL (YES) STANDOFF (YES) TANK (YES) EXTERNAL (NO) STANDOFF (YES) TANK (NO) EXTERNAL (YES) STANDOFF (YES) TANK (NO) EXTERNAL (NO) STANDOFF (NO) TANK (NO) EXTERNAL (NO) STANDOFF (NO) TANK (YES) EXTERNAL (YES) STANDOFF (NO) TANK (YES) EXTERNAL (YES) NO STANDOFF TANK (NO) EXTERNAL (YES)
2	SPECIAL TEST CONDITIONS STATIC TEST WITH AIR FLOW
21	ULLAGE ATMOSPHERE NORMAL AIR
~1	CRITERIA II INDICATES UNKNOWN CRITERIA VALUF STANDOFF FIRE DURATION (MILLISECONDS)

<u>3002</u>	DEFINITION
-1	CRITERIA III INDICATES UNKNOWN CRITERIA VALUE INCENDIARY BURN TIME (MILLISECONDS)
-1 -3	CRITERIA IV INDICATES UNKNOWN CRITERIA VALUE INITIAL EXTERNAL FUEL SPRAY TIME (MILLISECONDS) NO INITIAL EXT. FUEL SPLAY
-1	CRITERIA V IND:CATES UNKNOWN CRITERIA VALUE TIME TO MAXIMUM STANDOFF PRESSURE RISE (MILLISECONDS)
-1	CRITERIA VI INDICATES UNKNOWN CRITERIA VALUE MAXIMUM STANDOFF PRESSURE RISE (PSI x 10)
-1	CRITERIA VII INDICATES UNKNOWN CRITERIA VALUE SECONDARY STANDOFF PRESSURE RISE (PS1 x 10)
-1	CRITERIA VIII INDICATES UNKNOWN CRITERIA VALUE TIME TO SECONDARY STANDOFF PRESSURE RISE (MILLISECONDS)
-1	CRITERIA IX INDICATES UNKNOWN CRITERIA VALUE VOID SPACE AIR CHÂNGES (CHANGES/MIN)
-1	CRITERIA X INDICATES UNKNOWN CRITERIA VALUE AIR VELOCITY (FT/SECOND)

	* SEE DATA SHEET				:					-	!						:					
	C#11 1			0	-	0	-	0	5			0	-	•	E E	152	8	251	£	. 251	ъ	152
	INT				,								3		-		5	× .	,		,	
	714E MAX 9	CAIT	7	•	7-	•	7	•	7	0	7	•	1-	•	7	c	1-	10	7	0	7	0
	PRESS TIME PRISE MAX P (PSI) (\$4100)	. ;	12.0		0.0		0.0		0:0		2.2		2.6				3.0		9:2		2.2	
	TANK PRES (PSIA)	FUEL JESTH (TN)	20.02	19.0	20.05	19.0	20.02	19.0	20.0	14.6	20.0	14.0	20.0	18.0	20.0	14.0	20.02	14.0	29.0	18.0	20.0	18.0
	F19E	e .	_		-		-		-			,	-		-		-		-		-	
	L Luc L	7811	103	c	103	0	190		103	•	193	•	133	•	100	c	100	0	100	0	100	0
	403CCTLE) (2460	c	3696	U	>5036	o	2490*	6	2400		2400	•	2,00.	0	24004	0	24000	u	24000	ij
2	30A11 036030		Ţ	7	5.1	7	15	454	5.1	33	5.1	272	23	546	53	19	5.3	183	53	115	53	115
RESULTS	451E)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.		9.6		0.5		6		9.0				0.4		0.2		30		3.0	
TEST CONDITIONS AND	C 2417 C 2501 (1910)	1 210ch	9.43		9.33		0.03		0.93		0.03		6.13		9.00		7.33		0.10		0.00	
CONDIT	701x1	711			113		119		.191		193		113		140		215		216		215	
1837	14. 20.1)	111	÷		2,		3		5		3		Ş		23		, j		53		6.2	
	11170	6 >	7,5	7	5.	7		٤.	-	•	7.4	151	ç	r v	4.	ď.	7.8	σ « :	7 8 .	109	77	at Lr
	4 5 5	777) (•		ţ.	:	*	0.0	7	:	215	7.	192	47	130	71	946	 در			304
	191 June	111	22	<i>2</i>	2.	•		5.		J	3.5	~	2.5	•	25	•	26	Ξ	35	23	200	r.,
	100 100 100		•	Z Z	2 400 40 A0.0 20		40.0	FAILURE	40 40.1		60.0		49.3		50.0		6.03		60.0	i	the second to describe the second sec	
	134K 140F	11.6		2.1 PI A TR	ů,	3.2	0	2.1 PLATE	0,	;	5	1,	36	77		21	5	7.	0	212		1.
	rigi, Tauk Tyar tyar	11	0	-1-	ę	7	66,	5 -t	13	3	199	110	430	11	0,7	22	439	156	133	1-	6	50
	10 to	SPEC PREFULL	0: •	. 5	:	~	2	, ,	:	^		est.	~	t.	~	~	~	•	~	٠. ۶	27	~
	40 TEST			-	2	٨.	-	۳		4	2	ď	9	9	~	~		•		6	07	9

* SEE DATA SHEET		:						1				:::::::::::::::::::::::::::::::::::::::		† 				:			
* - 	~	* m	152	,	152	n	0		0	m	•	9	•		0	m	Ġ	m	210	m	210
TIME INT MAK P REA (S*100)		, , , , , , , , , , , , , , , , , , ,	0	7 71	•	-1-4		-1 4	ø	3 1-	0	-1 4	•	-1 4	0	-1, 2		3 4-		7 1-	0
94ESS 41SE (PS1) (2.4		0.0		3.2		3.8		2.8		2.2		1.0		0.0		4.2		3.6	
TANK PRES (PSIA)	FUEL	20.3	16.0	20.02	18.0	20.0	18.0	15.0	19.0	20.0	18.0	20.0	18.0	20.02	19.0	20.6	14.0	20.02	18.0	20.0	13.6
F 14E 179E		~		•		-		-		-		-		-		-		-		-	
FILL	1117	9	0	100	•	103	-	1001	•	103	•	100	c	163	9	103	0	160	•	199	6
		2436	• ,	2400*	0	2406	•	-30%2	o ·	2406*	9	5400	IJ	-001	ن	2430*	ŭ	2406*	•	5400*	9
(TYPE VEL		53	287	53	124	*3	167	53	5.8.7	53	115	53	164	5.1	121	25	22	5.1	112	53	219
ATE) ANGLE) (DEG)		23		13		30		3.0		0.5		10		30		6.5		10		10	9
SPACE ALO	(FRE) /	9.30		0.10		0.00		0.33		0.03		0.00		9.00		9.93		9.33		0.03	
THICK	1044 (440)	. 215.		.215		215.		.215		.215		215.		.715		.215		.215		.215	
(TYPE	17.00 (30)	Ç		2		Š		2		<i>(</i> , <i>)</i>		4.2		2.3		4.2		4.2		67	
15 mg 140 ()ec e)	6. >		\$	7.2	41	7.7	ę	404	111	4.2	4	•5•	42	***	142	770	. •	64	7.4	674	4.5
ع الله	C	0	470	31	0 F	9.2	1142	20	142A TANK	70	1 7 3 0	36	1 23 4	96	1212		143	3	6,28	4.9	
134J PH166	111		ř	3.5	 	2.	~	25	547 + 21 SPSI INITIAL PRESSION IN TAN	66	ŧ	26	u.	2,5	ž.	3.5	٩	32	,	3.5	7 4
107 107	ULL ATHO	•		69.3	21 PLATE PAILURE	50.0		60.1	L PRES	67.0		50.0		, ye		60.3		50.3		49.3	
TANK	ULL ATHO	9.0	2.1	-	2.1 \$7.518		2.1	9	1.5 INITIA	6		5	3.	-	2.1	67	1	0	1,	2	2.1
VEL 1	1100	£03	~	Ę	STRIKER	333	¢.	60.	547 +	139	519	5	5 14 +	965		000	c	433	11.5	004	661
NO TEST TYPE TYPE VOL. PHICE FU.	SPFC C	~	~	2	str.	2	κ.	67	۰. §	c.	~	~	C,		_	63	~	~	~	2	,
TFST NO	TEST NO	•		12	2	12	5	37	:	15	<u>1,</u>	15	5	1.7	17	5.		1.9	10	80	

THE STATE OF THE S

• SEE DATA SHEET		•												*							
CRIT		,	210		210	n	210	F	210	m	152	8	152		152	ю	152	m	152	n	152
TIME INT MAX P REA (S*100)	-	3 4 -	0	4 1-	0	-2 4	o	4 4-	0	4 1-	D	-1 4	0	5 44	0	1 3	0	-1-		-1 4	0
PRESS T RISE #1		4.E		2.4		2.2		0.0		1.0		1.6		31.6		4.2		2.6		2.0	
TANK OPES (PSIA)	. J	15.0	18.0	20.0	18.0	20.0	18.0	20.0	18.0	20.0	18.0	20.0	18.0	20.0	18.0	20.0	18.0	20.02	18.0	20.0	18.0
F19E 17PE		-		-		-		-		-		-		-		-		-		-	
FILL	7 × 11	9	•	100	0	1001	c	007	•	103	Ð	103	0	109	0	1951	0	150	0	1001	C
(FP4)	717	00,	ø	.30%	0	24000	O	26.05	မ	2400	0	-30%	Ü	2400*	ى	43646	ت	2435	.	2400	0
(987 <u>)</u> (1885		5	109	5.5	315	\$	112	23	c	\$3	26	53	127	53	93	5.3	9	53	144	53	113
ATE) ANGLE) (056)	384) 440) (186)	2		en		J.		3.0		9.		a.		£0		90		0.1		3.0	
SPASS A	(F02)	۵.13		6.93		9.13		9.33		9.30		0.93		6.13		9.39		0.33		9.99	
THICK .	10H 0	-215		.715		.215		\$16.		.215		.215		.215		.215		.215		.215	
(1405	(AL14)	~ ;		5		,		ç				Š		3		2,3		£ 5		6.5	
180 180 (056 5)	, T		;		¥2	*54	5	7.5	7	2.5	3	, , , , , , , , , , , , , , , , , , ,	A.	724	111	7.7	100	*24	n A	65	6
1640 FUT (3EG F)		ţ	7 D C		ç. 3	0.	77.	3.	6,10	Å	100		410	2.5	44.0	92	764	36	9.5	2	7 6 6
70170		25	;		J V	25	€ 3	6	Ç.	25	÷	35	5.	22	;	25	2.	22	٠,	25	۳. د
50°L VOL (3AL)				49.9		40.0		6.04		40.0		56.3		69.3		50.0		A.0.7		50.0	
1 A M T T T D E		D	7		2.1	0	1.2	0	7	0	21		7.	0	21	0.0	21		2.1		1,
3611 1106	71	4.30	125	0.04	174	4.00	344	4.33	Ç.	493	ያ ታ ሆ	- 12	412	490	342	400	335	930	3 3 3	933	161
	Spec	~	~	*	~		~	2	~	~	~	10	b 1	2	~	2	2	2	~	6:	~
yest type NO TEST	EST NO	2	23	22	22	23	23	2.0	24	52	52	26	\$5	27	23	28	53	62	53	30	3.0

THE COURT OF THE PROPERTY OF T

* SEE Data Sheet																					
1 1	SA X	_	•	,	0		0	m	0	m	0	m	•	m	152		152	n,	152	m	152
TIME INT MAX P PF1 (S*100)	C914 IX	, ,	0	-1-4	0	4		4		7 1-	0	3 4	0	-1 4	5	, 1-,		7 7-	0	1 .7	0
99ESS 91SF (PST) (*		;		4.1		2.0		2.2		1:4		2.0		1.6		1:1		5.5		1.6	
PRES (PSIA)	(20.0	16.0	20.0	14.6	20.0	18.0	20.0	18.0	26.0	14.0	20.0	19.0	20.0	13.0	15.0	13.0	20.0	15.0	20.0	18.0
1 4 DE		~		-		-		-		-		-		-		7		-		-	
FILL TYPE	10.5	100	0	130	. ~	103	6	1031	0	100	•	120	0	100	6	100	c	100	0	163	0
VEL) (FPS)	711	5496	6	5400	င	1073	9	2400	J	2430+	J	\$3052	U	2400	6	2406	u	2400	Ü	2400	O
(170g	> (53	664	53	211	5.3	129	53	193	53	117	53	132	53	12	53	. 37	53	234	5.3	420
A 47 LE)	54) (02) (165)	0,		6.2		0.		-		5		4.9		40		0	IN TEST			02	
50405 A (Trb) (100 (hau) (100 (hau) hsC75	, . 00		(6.3)		4.03		4.93		4.93		6.93		4.03		4.33	PAESSURE RISE	4.31		4.37	
THICK (14)	1014	-215		.215		.215		215.		.215		.215		.215		.215		215		215	
1015	(VI)317 (FRC) (FPC)	ÿ	ģ	3		3		2,3		4.2		ç		7.5		27	WEAKED BY	24		2.7	
1140 (756 F)	11e5 ^	ر د د	3.	1.	K .		.	15	10	v		5.7	40	18.5	23	45.	PROBABLY N	.	13	***	1.
() () () () () () () () () () () () () (95	, ,		e C C		3	1	402	9.5	n 2 û	1,5	¢ 23	0.0	144	33		9.9	436	00	114
1340 DHA15	100	25	1ن	TANK PLAIB BELYBEN SIAMOOF	3	164	e.	5.0	*	3.5	Ş	C.	*	35	ř.	3.5	2 16 2: • • • • • • • • • • • • • • • • • •	400 106 40.0 72	£	2.5	ť
505t Vol. 151U		40.0		4.0.7		6.64				40.3		13.1		6.0		80.3	IT BOTH	43.0		C . De	
TYOE FIFE TAUK TEST TYDE TYDF	7) 4T 40	106	5	135	21	103	÷	196	2	104	21	106	21	106	12	106	CKED A	106	21	138	2.1
FIFE	1100	907	5	٢	394	00%	4.74	4.00	161	007	212	4.90	5.	004	91	00,	16 ED CR	004	115	004	,
170E 1591	1. 1/2	~			•	~	~	~	~	~	~	61	~	~	~	2	* ME	~	~	2	~ :
TEST TYPE	1851 NO	11.	E	42	25	5	F	2	34	35	3.5	32	45	37	37	3.8		9	ç	6.0	0,

OATA SHEET		:																:			
1 1	C.R. X	, , , , , , , , , , , , , , , , , , ,	152		152	F	0		0	F	•	P	0	F		5	0		152	n	152
THE THE		•				,						,				5		,		3	
915 (4100)	CRIT	7	•	7	0	7	0	7	0	7	•	7	6	7	c	7	. ``	7	•	7	0
916F 10511 (6		1.6		1.9		2.0		1.1		1.9		1.3		1.6		1.9	
2300	705t 35 PTH (17)	20.0	19.0	20.0	14.0	20.0	19.0	20.0	18.0	20.0	13 ° K	20.0	18.0	20.0	14.0	20.0	19.0	20.02	14.0	20.0	18.0
4 0 5				-		2		~				-		-		-		2		-	
	7111	133	~	100	•	133	0	163	0	100	c	100	0	103	•	100	0	101	60	100	0
761) (FPS)	112.	25.30	u	2097	ت	•3642	6	2436	د	\$0092	U	2400	ت	*30%	.	±3012	5	2400	0	24300	0
(TXP (EPS)		23	c	5	.	53	3	5.1	159	5.3	105	53	105	51	1 26	5.1	75	53	104	5.3	111
אינרבו אינרבו	17 TO 1	8		32		U.F.		3,		4.3		19		19		3.0		62		41	
COACE AVELED	1 SLASA (201) A	6. 00.4				66.3				4.03				4.39		4.33		4.30		4.01	
1410x	A 20)	-312		213		-215		-215		216.		213		-312		215		-215		.215	
	•	Ş		5				Ş		3		3		ç		4.2		ij		6.2	
ל כו (שני ב) מנו באט			.		7	5	7		ç		ī	6.73	263		46	2,	Ħ	462	.7	4	7
נייני נו		۶	:	e e	;	9.0	71.	2	476	60	•		C y F	0	720	טנ	240	טר	146	ů.	1000
parter		ķ	ٺ		ç		:		٤	2.2	č		c		•	6	w _.	25	~	32	a
(1,5) (1,5)				6.3		10.3				1.04				.0.0		10.0				0.00	
0	٠ ۲ د	<u> </u>	2.1	40.	.	4.0	7.	125	5	104	\$1	134	1,	136	21	136	2.1	165	7.	136	2 1
1 0 C A			6	65.4	ţ.	60.	. 1 24	439	u u	400	242		149	138	435	433	431	133	+ + 0 =	30	+ 1, 2,
3641 1591	Sec. 7	, ,	2	2	~		~		c	~	~			,	10	~	~	61	۸.	~	^
N 1531	51		1 1	24	4 2	£ 3	-	1 3	4 .	5.5	4.5	£5.	£	1,7	-3		சு சே	6	3		5.0

* SEE DATA SHEET		*										!				•	:				
CRIT	œ×	m	152	1 27	152	9	152	n	152	m m	•	n	9	'n	0	7	0	~	6	n	152
WE THY X P REA 100)	-	-1	0	4 4	0	-1-	•	3	0		•	3	6	3	9	-1 4	0	-1 6	6	-1 4	0
PRESS TIME I	C	2.3		2.0		2.3		2.7		1.2		D.1.		*		٠	,	0.0		0.0	
TANK PRES (PSIA)	•	20.0	18.0	20.0	14.0	20.0	19.0	20.0	18.0	20.0	18.0	20.0	14.0	20.0	19.0	20.0	15.0	20.0	14.0	20.0	24.0
FIRE		-		-		2		-				-		m		۳		~		-	
FILL	CRIT	193	6	100	0	190	0	001	0	100	•	100		100	0	1110	0	103	n	103	0
		2400	•	54000	9	*2045	6	*303.	O	2406	•	24004	0	*0u%	رن	2490	u	*90%	O	2400*	0
(TYPE VEL) (TYPE VEL) (FPS)	-	53	178	93	1.1	5	132	53	166	53	c	53	7	53	æ	53	•	٤٤	, 0	53	ø
	5L05H)	0,		10		3.0		ěř		0,		0		0.		0 2		30		3 2 5	
<pre>cpace awsle) (IN) (DEG)</pre>	(F45)			4.90		4.03		4.37		1.09		1.13		1.03		1.01		1.03		1.03	
THICK (TA)	102) 823) (TN)	-212		216.		\$12.		.215		.215		214	10	.215		.215		.215		.215	
1 40 5	-	£ 5		.,		24		4.2		5 2		4.2	-1 ON PREVIOUS SHOT	£ 7	,	ć 5		, c +		, , , , , , , , , , , , , , , , , , ,	
140 140 (366 F)	±1 0°	,	22		:	,	7	1, 3,	7	.07	7	2,7			7	* 7 *	-1 FIRE	*	- 1 FIRE	•	. 1-
FUEL CAFS FE	181	000	454	0.6	6.45	6	\$ û £	30	474	100	FIRE	y c	7.5 WIRING	4.5	с ш	9,		•	- ₹		٥,
TOAJ	1100	~ ~	c	25	•	25	•	22	•	62	12 LY LARG	86	7 A 7 - BURNT WI		TE NAL FIR	ç.	ARGE EX	20	TL ARGE EX	G N	<u>.</u>
FUEL VAL 15413		F . CK		40.3		40.0		30.0		94.3	EXTREME	2 400 (*0 08.) 55 9	2 -1 21 76 LOST INSTRUMENTATION - BURNT W	90	2 -1 21 ********************************		2 -1 21 4C 6 IMMEDIATE AND EXTRA LARGE EXTERNAL	4.1	2 -1 21 The TARGE EXTER	39.3	
		1,76	12	146	2.1	1961	2.1	196	21	1.0	2.1 AND 1	0.1	2.1 PRUMBN	1 10	21 LARG	130	2 % T	140	2 N	7.0	31
TYPE FUSE TYPE		430	324	004	267	404	245	900	150	400 1.0 94.	-1 EDIATE	0.03	-1 IT INST	004	-1 REMELY	90.4	-1 IEDIATE	230	-1 BDIATE	6.30	7
1406	() () (d)	2	r.	~	r .	~	~	~	~	-		1		1	- EXT	~		i		•	c .
1551 140F	EST NJ	51	15	55	25	53	£3	75	ů,	55	\$\$	5.5	ç	57	5.5	er C	ις «	59	4	λ0	20

A CONTRACTOR OF THE STATE AND STATE AND STATE OF THE STAT

* SEE DATA SHEET		•		:				!				!										
CRIT		М	152	7	152	-	152	m	0	m		m	6	Б	•		,		m.	152	-	152
E INT PREA 10)		, ,	•	-1 -	6	-1 4	0	7 7	0	7 7-	0	1 1	•	4	c			.	-1-		, , ,	0
PRESS TIME RISE MAX P (PSI) (S*100)	8"			3		0.0		5		3				-1.0			•		; ; ; ; ;		· ·	
TANK PRES (PSIA)	FUEL DEPTH (IN)	20.0	10.0	20.0	18.0	20.0	18.0	20.0	18.0	20.0	18.0	20.0	16.0	20.0	10.0	SPILLAGE	0.02	14.0	20.02	19.0	20.02	18.0
F13E 170E	1	~		-		-		~		-		2		2			-		-		4	
FILL F TYPS T	0,411 V 111	100	9	130	0	100	0	100	6	100	-	100	0	100	9	HE. 14N	201	0	103	c	100	•
71LE) VEU) (FPS)		2400*	•	2400	6	2400	o .	24004	Ö	2406*	0	2400+	P	5400+2	Ü	(0. X) 0 9 1	0	2406*	ن	2400*	ن
(PROJECTILE) (TYPE VFL) (FPS)	£1 :	53	10	200	•	5.3	C1 .	53	9 0	53	•	53	5 2	53	7	MASH_BA	ŗ	9	53	33	53	\$2
	34) 340) (766)	0,		30		0,		4.0		0 +		0.		0.5		7 10N G	.		30		40	
SPACE ANGLED (TH) (OFG)	(FRED AN	1.00		1.93		1.00		1.00		1.07		1.90		1.93		PAD BUT DID NOT FLASH BACK TO THE TANK	1 • 02		1.00		1.00	
THICK	ACD)	-215		.215		-215		-215		.215		.215		.215		TEST	•112•		.215		.215	
(STOTK	-	* C *		4.2		2.4		5.4	•	Ç		5.3		24		8	¢.		5.5		Ç.#	
7540 140 (356 F)	0 11 v	• F.	;	0,7	¥	4.5	7		7	7	7	32*	7	*	7	INED ON	•	7	334	7	P .	7
TEND FILEL JES F) (Celt	0.6	# Ľ	96	7	0 0	r, C	98	3	9.5	E a	9.5	ų,	96		OL 8 - REMAINED	E-	T.	50	407	93	113
1817 0440		32	1,	2.5	ï	22		22	1,6	35	1,0	3.5	J & C	22	J	H NOIL	C	7 8	: C	۲	20	-
F!)FL VOL (GAL)		93.3		98.0		94.1		94.1		99.3		04.9		9.8.3		PIRE SHOT OUT PENETRATION H			33.0		19.3	
	0 × 1	170	21	130	2.1	130	21	1.0	31	1.70	1,	130	2.1	0.1	21	5	£2.	21	130	21	130	21
FUEL TANK TYPF TYPF	COTT 1166	620	7	00,	7	430	7	004	7	173	7	330	7	460	Ŧ	SHO1	- O	7	191	431+	.00.	271
ພ ⊢	SPFC CO	2 6	2	2 4	~	2 4	•	2	٨:	2 ,	€.		8			FIRE	N	٥.	2	~	2	61
TEST TYPE NO TEST	TEST S	51	1,	5.2	25	63	63	9.6	3,	5.5	ñ	99	88	57	25		r r	ب	69	69	7.0	7.0

* SEE DATA SHEET		* * * * * * * * * * * * * * * * * * * *						:		!								1	*		
CRIT I	CRIT	# M	152	m	152	-	152	m	152		152	m	152	m	152	m	152		152	10	152
RES												,		3			*	,		3	
11ME MAX P (S*100)	Ξ×	7	0	7	c	7	23	7	23	7	23	7	23	7	2.3	7	23	7	23	7	23
015E 1				0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
TANK PRES (PSIA)	FUFL DEPTH (IN)	20.0	19.0	20.0	14.6	15.0	18.0	20.0	16.0	20.0	18.0	20.0	18.0	20.0	18.0	20.0	19.0	20.0	16.0	15.0	19.0
F19C 140F	1			-		-		-		-		-		-		-		-		-	
f TLL r YPE	111	100	0	103	c	100	•	130	10	100	o	103	•	100	6	133	0	100	0	100	0
(TYPE VEL)	7411	2536*	0	2400	J	2400*	25	-0012	æ.	2400*	c	2400*	6	*3072	U	24004	မ	*3042	0	2400*	0
(TYPE	140	2.5	5.8	53	C	53	56	53	\$ \$C	53	4.5	53	6	53	20	53	7.	53	6.0	53	6.3
ANSLE) ANSLE) (056)	v -	0 2		G.		3.0		3.0		40		3.0		0 -		92		3.0		0,2	
4.1)	6.0	1.37		1.03		0.03		00.0		9.09		00.0		9.39		9.99		00.0		0.03	
1HT0K (TVI)	_	.215		.215		.215		.215		.215		.215		.215		.215		.215		.715	
1616 1617 1617 1617 1617 1617 1617 1617	(May)			24		6.5		6.71		4.2		24	US SHOT	•		1,2		4.2		4.2	
(1 030) (180 E)	tio:	* * * * * * * * * * * * * * * * * * *	7	334	7	*6.7	r t	* 3	e.	*0 7			-1 PREVIOUS		ž		54	*6 7	0 6	***	23
ייני ב) הואבר הואבר	100		252	95	9.	£ .	7	9.0	0 4	56	# 10 10	56	- 90 P	9	-1	60	7	3.0	26.8	30	7
) July E	141	25	۲,	6.6	۲.	25	10		۲.	22	ų.	22	IS BLOWN	25	16	32	10	25.	13	3.5	ď
TEST TYPE FUEL TOAL NO. TEST TYPE (GAL)		0.60		0.46		59.9		A1.6		60.0		6.0.0	2 TOT 21 STANDOFF PRESSURE LINE BLOWN	60.0		40.0		60.0		6.03	
178 148 148 148 148 148 148 148 148 148 14	1	0 2 7	21	140	1,	0.0	2.1	0	21	9.0	2.1	0	21 PRESS	-	3	90	1,	9.6	12	90	74
T Y D E	11	2 900 110	* 7 7 7	900	7	400	340	004	44.7	433	34.2	065	TOT ANDOFF	4.30	2.28	430	142	436	152	86	141
TEST TYPE TYPE TEST TYPE TYPE	U ►	•	~	~	8		~	~	~	~	7	2	SIA	~	~	~	~	~	6		~
NO NO		7.1	11	7.2	7.2	2	r.	7.6	7.6	7.5	7.5	76			11	7.8	8.	5.	67		0.

THE RESIDENCE OF SEASONS AND ASSESSMENT OF SEASONS ASSESSMENT OF S

EST NO	NO TEST TYPE FUEL TANK	TYOF FUEL TEST TYPE	7 L 7 C 7 L	ליויר לאני נפאני	Patric	TEMP TEMP FIFE THO FIFE F) (DEG 1	140 (366 5)	(1705	THTOK	(14) (0+0)	F 445(E)	(TYOS	(15A 50AL)	¥1 50 × 1	ų.	PRES (PSIA)	PISE HAX (PSI) (5*13	44X P REA 5+1301		DATA SHEET
			ULL		, , , ,	# A C C	11 o'u	(V[941T] (FQC) (CP4)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(ACA)	() () () () () () () () () ()	L				FUEL DF0TH (IN)		_	CRIT X	;
91	,				# # (y # () #) (·		2.2	512	9.93		53	30%	103	-	20.6	0.0	, I-	m	
7	c	277	Į,		ţ	3 95	4					113	5	52	•	14.0		23	152	
2	2	130	0	50.0	2.5	ű é	4.54	6.3	.215	9.38		8.8	2400	1110	-	20.0	0.0	-1 4	m	
82	٠ آ	RE RE	71 IGMITE	FIRE REIGNITED IN SIANDOFF	1.1 NDOFF	-	e.					125	9.5	34		18.0		£ î €	152	
7		800	0,	2 900 40 60.1 22	3.5	0.1	* 2 4	6,7	. 215	64.0	- F	53	*30%2	103	-	20.0	0.0	7 1-	P	
=	۶ ۱	7.8.7 IRB RB	2.1 IONI 156	2 797 21 14 14 14 14 14 14 14 14 14 14 14 14 14	1 th	7.02	41					5.3	0	0		18.0		23	152	•
3		\$30	-	40.3	25	53	• 2 3	ż	.215.	6.0	40	23	2436*	103	-	20.0	0.0	4 1 -	m	
?	~	259	2.2		« 1	7	0 +					55	0	0	•-	18.0		23	152	
	2	400	; -	6 55.3	2.5	95	,2,	C ,	.215	0.33	3.0	53	2406	103	-	20.02	0.0	-1 4	m	
45	2 E	257	21 GNITE	2 257 21 t(1 (WDOFF	7	1.7					5.4	c	6	•	18.0		23	152	
3,	63	00.	C)	40.0	2.5	06	-	Ç	.215	0.00	6 £	53	*3052	193	-	20.0	0.0	4 1-	m.	
35	~	610	21		=	45	0					en F	0	6	•	13.0		101	207	
5	2	430	0.	49.1	3.5	0.0	*	ÇŢ	.215	9.03	0 +	53	\$400+2	100	_	20.0	0.0	3	m	
4.7	~ I	225 (RB RE)	21 IGNITED	2 225 21 a	NDOFF	177	6					5	5	3		19.0		101	507	
ç	;	000		64.6	22	00	* W.	Ç.	.215	6.03	0.2	53	2400*	100	-	20.0	0.0	7 7 1	P.	
	•	254 IRB RB1	?! IGNI TBE	2 254 21 PIRE REIGNIED IN STANDOFF	1 C NDOFF	902	4					en J	0	0	-,	13.0		101	705	
68	;	004	e F	6.04	2.5	50		£ 5	.215	6.0	30	£ &	2430	100	-1	20.02	1.0	-1 4	100	
6	r	145	₹		c	174	7					-	Ü	0		18.0		101	507	
6		193	9	69.9	25	0.0	7	Ç.,	.215	0.03	30	23	5400	100	-	20.0	0.0	-1 4	m	
9	~	229	2.1	2 229 21 24	70	146	23					3	5	0		18.0		101	507	

* SEE DATA SHEET		•																		† 	٠
C411 I	CR XX E	. H.	507	m	507		507	B	507	m	507	m	507	2	205	m	152		.152	m	152
TIME INT MAX P REA S*100)	CAIT	**************************************	101	-1 4	101	-1 4	101	1 4	101	1 4	101	7 7-	101	3 -	101	, I-	96		96	7-	96
PRESS TIME RISE MAX P (PSI)(S*100)		D .		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
TANK PRES (PSIA)	FUEL DEPTH (IN)	20.0	16.0	20.0	18.0	20.02	19.0	20.0	16.0	20.0	14.0	20.0	13.0	20.0	18.0	20.0	10.0	20.0	14.0	21.0	19.0
F19E		-		-		-		-		-		-		-		-		-		-	
FILL	C91 V11	100	•	100	0	103	6	100	~ .	100	60	100	c	103	c	139	6	100	c	103	c
VEL) VEL) (FPS)	AIT VII	2400	0	2600*	ပ	24004	<u>د</u> ;	24004	9	2400+	0	24004	ت	÷9042	c	24000	0	24064	0	24004	Ü
(TYOF VEL)		53	†	53	2	53	7.0	53	\$	5.3	Ş	53	66	53	69	53	\$	53	5.5	5.3	44
	(166) (186) (186)	0,		10		0.		30		4.0		0.5		3.0		30		4.9		0.2	
CPACE ANGLE) (TN) (PFG)	HSCTS 1	60.0		9.00		9.93		9.03		0,49		9.03		9.43		9.90		9.33		0.93	
ž÷		-215		-215		.215		.215		.715		-214		.715		-215		215		.215	
(Stotker Type Thre		Ş		ij		24		6,7		24		5		2,5		2,4		2		Ç	
740 740 ()56 F)	=	75			02	, ,	۲	* 2	γ γ	454	ş	* 4 7	23	b U J	ς. Υ	÷6.3	14	*0*	σ F	* 0 7	
16 6 9 0 16 16 16 16 16 16 16 16 16 16 16 16 16 1	£,	90	96	3.0	c .	96	156	:	.2.	60	2.0 m	0.6	t v	98	3	3.0	1,16	0.0	254	9.	ე •
T24J PHASE (f	,	25	<u>.</u>	25	c	6. ·	o	2.5	•	26	•	2.5	æ	3.5	•	3.5	4	6.4	4	2.	3.6
FUEL VOL (GBL)		F.0.3		6.04		40.0		60.0		40.0		60.0		40.3		50.0		63.3		53.3	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	15	0	21	9	1.	2	12	0	13	6	7.	30	2.1	2	21	\$0	12	3.0	1.	0	Ę
U ^C L *			111	404	7.5	0.04	192	607	142	499	211	603	4114	600	91.5	4.33	24.2	004	4	4.00	516
TYNF EUFL TFST TYPE		2	~	~	~	~	~	2	6,	2	~		61	2	~		~	~	∾	~	~
1551 TYON		ī	16	26	26		43	36	3	96	95	96	96	46	σ	9.8	6	66	6	190	150

TO THE PROPERTY OF THE PROPERT

* SEE DATA SHEET										•									÷		
CRIT 1	CRIT ×	n	152	m	203	m	202	m	201	m	507	n	507	m	205	3	205	m	507	-	152
REA		,		,		,		3		\$		3				3		3			
1 0 0 1	CRIT IX	7	96	7	325	7	325	7	325	7	325	7	328	7	325	7	325	7	325	7	96
PRESS TIME I RISE MAX P F (PSI) (S*100)		0.0		0.0		0.0		0.0		0.0		-1.0		0.0		0.0		0.0		0.0	
TANK PRES (PSIA)		20.0	18.0	20.0	18.0	20.0	13.0	20.0	13.0	20.0	19.0	20.0	18.0	20.0	13.0	20.0	18.0	20.0	19.0	20.0	14.0
FIGE	1			-		-		-		-		-		-		-		-		-	
FILL		100	90	100	•	100	0	100	6	100	•	103		100	0	193	0	100	· e	100	0
(PROJECTILF) F (TYPE VEL) T (FPS)	VII	2400	8	2400	o	24064		24004	٥	2430*		5400*	o	24004	0	2400	Ü	5400*	υ	2400*	u
(P80JE)		53	36	5.5	75	53	65	53	÷	2.5	76	53	7	2.5	162	23	528	53	215	5.1	4
.415) 4451E) (056)	() () () () () () () () () ()	0 1		40		0		40		36		3.0		6		5		10		20	
SPACE A	(ארט) (אם) (שהט עיים) (ארטא)	9.70		0.93		9.33		0.03		9.36		0.0		0.99		0.03		6.49		0.93	
THICK		.715		.215		.215		.215		.215		.215		.215		.215		.215		.215	
ryne ryne	VI33 FRF7 (194)			2,		Ç		4.2		2.3		6.79		Ç		7.5		Ĉ,		2,3	
180 180 180	ر 1 مر		<i>3</i>	6,3	Ů,		0 7	3	y.	# F	¢.	C 3	ï	5.0	Ç.	5.0	۶.	9.5	٨.	3 6	
Seg e)	0.01 1.V	3 6	110	3.0	25	9.0	144	36	225	9.0	J.	9.0	č.	5	7.8	0.6	124	9.0	122	00	4
BARAGE	111	22	0	32	ů,	25	.	3.5	10	32	7.	22	**	5،	1,	66	f.; \$,	13	č	^
FUFL VAL (5AL)		2 470 50 50.1		£0.3		50.3		66.3		40.0		69.3		A.2.3		56.3		50.3		53.3	
TANK	91. 41.0	3.0	2.1	9	21	100	21	9	21	9	2.1	0	10	9	2.1	-	21	9.0	21	2	7.1
1 A J C F	116	06.4	196	4.9.1	24.8	6.00	252	005	234	00+	204	900	2	306	41	490	5	930	*	935	171
	SPIC COLL DEC	2	6	2	2	2	C 2	61	2	2	~	61	·		^	~	61	2	~	2	
TEST TYPE NO TEST	1557 40	101	101	192	102	101	101	134	104	105	105	106	104	107	107	103	198	109	103	110	110

* SEE DATA SHEET																						
CRIT	CRIT X	, n	152		,	761	m	152	E .	152		152	n	202	E .	503	m	152	100	152	'n	152
TINT RED		-1-	96	4		9	4	96	4 4-	96	-1 4	96	7 7	125	-1 4	325	-1 6	1.8	-1 4	16	7 7	9
PRESS TIME RISE MAX P (USI) (S*100)	CRIT	0.0					0.0		0.0		0.0	-	0.0	Ħ	0.0	m	-1.0		4.4			
TANK PRES (OSIA)	FUEL DEPTH (IN)	20.0	16.0	20.0) · · ·	20.0	18.0	20.02	19.0	20.02	14.0	20.0	19.0	20.0	18.0	20.0	19.0	20.0	18.0	20.0	18.0
1				-	•		-		-		-		-		-		-		-		-	
FTLL TYPE	7817	103	•	664		-	202	6	100	•	COT	•	1001	•	100	c	100	10	100	•	193	•
77LE) VFL) (FPS)		-303	•	9630			400+2	•	2400	•	2400+	J	2406	G	+30%	0	-3042	3	00%	0	2400	0
(TYPE VEL)	Serr VI	53	53	5.1	ć	r	5.	7.	5.3	ţ	53	; .	53	242	53	270	53	5	53	5 2	43	3.4
PLATE) 5 AMCLF) 7 (755)	χ τ ς,	0		9.	,		5		6.		0.		0		ç.		4.4		0.2		0,	
(13) (13) Space andle) 	(F957)	0.33		0.13	:		9.00		0.63		0.91		9.00		9,03		4.63		4.03		4.03	
7.E.E.E.E.E.E.E.E.E.E.E.E.E.E.E.E.E.E.E		.215		214	•	1	.215		.215		.215		.215		.215		.215		.215		.215	
(17pc	~ ~ ~	Ş		6.2			ç		5,		Ġ		24		7.5		23		23		7.5	
144P 140 (חכיה ה)	14c7		1.1	75	-	5	5.5	10		16	E 3	۹.	£ 3	e	4.3	9 6	5.2	14	75	36	7.5	er uc
() () () 1) () () () () () () () () () () () () ()	1100	00	4	00	, ,		Ę	ž	000	ت. لا	36	11.4	56	4	96	10	00	ď.	60	*	00	er er
• ~ !		22.	^	200		NDOFF	25	•	25	36	22	1,	8	4		ų.	35	•	26	14	35	u
12/16/77 TYPE TYPE VOL. 74A. H. TEST TYPE TYPE VOL. 74A.		K0.0	;	FIRE RELGALIED AN SIANUOFF	:	PIRE REICHIED IN STANDOFF	60.0		50.1		60.0		40.7		40.0		90.0		40.3		30.1	
1404 1406	11.L 15.00		7,1			CNITED	ç	5	3.0	2.1	•	2.	0	12	0.	12	196	31	1.36	21	194	21
FUEL	SPEC COIT ULL	00.	7	142		RE REI	900	178	404	249	4.30	201	430	Ť.	004	\$\$	004	141	003	221	005	10
6/77 4 TYPE TEST	1591	111 2 400 50		•		- 1	~	~	~	~		~	2	~	2	~	2	2	2	٧	2	2
02/1 TEST NO	40	111	111			711	113	113	114	116	115	114	116	116	117	117	114	11.9	119	119	120	121

• SEE DATA SHEET		•						*													
CRIT	CRIT	m	152	-	251	,	152	F	507	_	207	m	202	m	507	n	152	n	152	m	152
TIME INT MAX D REA S*130)	CRIT		1.8	-1-	5	3 4-	1.6	1 4	η. 6	1.	5.8	3	8.5	3	′ α	-1 6	=	3 7-	1.8	4	1.8
9455 T						.5				3.		٠.		3		0.0		0.0		-1.0	
TANK POES (PSIA)	FUEL DEPTH (TN)	20.0	19.0	20.0	19.0	20.0	19.0	20.0	18.0	20.0	19.0	20.0	19.0	20.0	19.0	20.0	18.0	20.0	19.0	20.0	13.0
FIRE		-		-		-		-		-		-		-		1		-		-	
FTLL TYDE	1110	103	ø	100	0	153	c	100	0	100	9	193	0	103		5 8	•	103	0	109	0
71.F. VEU (FPS)		2436*	u	-30%	6	5400+	O	+3012	ű	2400*	o	2406*	ن	2406*			0	*36%		2400*	0
LJafübel (178E	114:	2.5	3	53	52	53	69	T.	3	53	9	25	36	23	54	53	Çi F	53	s,	53	-1
10 P	() () () () () () () () () ()	ن د		er		E F		6.		40		e		62	Ş	000		3.0		4.5	
CONTRACTOR	С.			4.73		6.03		66.7		4.93		4.11		6.90	SPERANTME	4.03		4.00		4.99	
THICK		215		216		.215		214		215.		215.		.215	PTOR SP	.215		.215		.215	
1 512 (TVD)	4	~,		5		Ĉ,		24		Ç		ij		Ş	TANDOFF	2.5		Ş			
116 c) (166 c) 118[140 118 (160 c)	20,7	7.	7	3.6	•	ō,	ċ	ç	6	5.4	Ľ T	80	1,	4.9	AK TBD IN S		196	6.1	100	¥0.4	7
ئريم اري م	5 T >	36	3		4	ē	0	95	:	0.0	, r	,	ر. ج	5	26 RBSUL	20	8	ĕ	£ t.	6	:
121J 0455F	6 6 6 7	2.	•	2.5	ti	3.5	7	25	ı	3.5	α		•		F ENGINE	i	7	3.5	u	35	۴.
LOAL)		0.0		40.3		49.0		40.7		0.0		40.0		19.0	PREMATURE SHUT DOWN OF ENGI	96.3		40.3		43.3	
		158	1,	105	7	104	2.1	104	-	104	5.	106	15	106	2.1 SHUT	106	21	106	51	198	2.1
156 T 40E T	11 4	4.30	111	001	+ 2 1 2	400	7	4.30	+ 462	004	295	100	121	063	191*	130	ī	00+	7	930	150
TECT TYPE TANK TYPE FIEL TAIK	10 C	~	N	2	r	~	~	~	•	2	ħ1	2	8	2		1	~	~	~	~	~
TEST TYPE NO TEST	EST NO	121	121	122	122	123	121	124	124	125	12	126	125	127	127	129	12	621		130	139

* SEE DATA SHEET		* * *																•				1		
CRIT I	CRIT ×	. P	152	-	152	-	152	,	205		205	7	t ro	507	М	507		ю	152		152		m	152
REA								3					3		-			3	`	3			J	
KAX P (S*100)	CR11	7	10	7	4	7	13	7	ε 90	7	5.8		7	58	7	2.8		7	75	7	75		7	75
415E (051) (0.0		0.0		0.0		0.0		0.0			•		9.0			0.9		0.0			0.0	
PRES (PSIA)	FUEL NEPTH (TN)	20.0	16.0	20.0	14.0	20.0	18.0	20.0	11.0	20.0	16.0		20.0	19.0	20.0	18.0		20.0	18.0	20.0	18.0	. !	20.0	19.0
202	_	-		-		-		-		-		!	-		-		-	-		-			-	
TAPE		001	o	100	•	100	0	100	c	130	c		100	0	100	ø		100	•	100	0. *		101	0
		2400.	ပ	24000	o	2400*	U	2400	0	+30%2	0		±50%	၁	2400*	0		2400*	g	24004	36	1	24064	0
(TYPE VEL)	SRIT	53	22	5.1	J.	53	5	53	96	53	4.5	* * * * * * * * * * * * * * * * * * * *	53	ű	5.3	3.2		5.3	24	53	111	1	53	7,4
` <u>@</u> g	24 P 2	P		0,		0 ×		30		10			0.		30		ITSELF	10		10		1	43	
100 (A1)	(FRE) (NFG)	6.39		.00		. 00		6.93		4.10			4.33		4.33	i	SHBO 11	4.39		60.1			4.03	
¥2.5	040) (140)	-215		516		.215		.215		.215			.215		215		EXTINGUISHED	-112		212			213	
(TYDE T	25.0	Ş		24		23	8219	Ş		4.2			42		6.2		SHUTDOWN			6.5		,	6.7	
	= :	¥0.	4	£0.	101	, v	114 STANDO	£7 42	11.	47	,		۲۶	75	4.3	۲	ENGINE SH	*,	26	4.4	36		ů t	7. 6
OEC E) (DEG E)	0017 1V	٥	ď	9.5	56	000		2	22	F. C	7		z,	ć:	ÜC	7	IFTER BY	90	200	je	ű	1	ئ	376
Soved	111	۲.	o	25	u.	6.6	7 ST PIPE		۴.	3.5	J		ć,	r	25		٠,	ڊ		25	G		£~	:
5 P. C.	,	ر.۵		0.0		40.0	2 404 21 2 404 PURANSE PIP	40.3		43.0					40.1	į	FIRE IN STANDORF CONTINUED	C. U.	ž	20.0				
6 > 6 >	110	106	2.1	106	2.1	106	2.1 10.1 Ot	106	E	196	7.	ž Ž	136	23	196	12	3	1,16	1 2 2 2 2 2 2 2	13,5	21		136	2.2
T Sec.	110	• 00 ·	104	00.	279	490	404 MES ST	A39	211	00+	+ 5/2	- !	uC &	-1	0.00	12 + 662	27	430	275 1888	2 400 105 40	4114	,	930	415+
NO TEST TYPE TYPE IN PROPERTY.	Ser Colf JLL	**************************************	•	~	٧		~ ₹ •	~	~	2	2	3:	~	C I	2	~ 6	, ¦	~	2 48		. ~	1	€1	~
EST NO	EST	131	111	142	1,12	1.13	13.1	1.74	134	135	135		136	136	137	137		138	118	139	139			140

Second March Coli Coli	TEST NO	1651	FUEL	1 4 N K	TEST TYPE FUEL TANK FUEL TOA NO TEST TYPE TYPF VOL PHA (5AL)	7 b	(166 F)	1 NO 1 NO (1) F G F)	36(1)	, X.	SPACE (TV)	ANGLE)	(TYPE	CTILE) VEU) (FPS)	FILL	F18E 179E	TANK PRES (PSIA)	PRESS TIME RISE MAX P (PSI) (S*100)	TIME WAX P S*100)	THE	CRIT	* SEE DATA SHEET
2 4277 + 21	NO NO	,	CRIT	שבר מדש		119	71 71	٠ ا ا	(FRED	10N 0	(F850 (C04)	154) 440) (150)	Celt	CR11 V11	CRIT	_	FUEL		CRIT		CRIT	
2 4319 21	1,1		00	106	0.0	22	ê	0 .	~	.215	6. 33		• •	2400	•	-	20.0	0.0	7		m	
2 431 + 31 2 431 + 31 3 4 6	141		4212	~		:	₽ 52	£					7.	0	•		18.0		7.5		152	
** STANDOFF PIRE SHOT FLAMES OUT VENT 2 4570+ 71	142		300	1 2	:	~	0	. v		.215	4.13	30	5.4	2400	100	-	20.0	0.0	7-	*	m	
2 1470 + 21	142	•	TANDOP	FIRE	SHOT FI	C W		3					35	ن	9		16.0		180		205	
7 4970 + 21	15.		00.4	106	90.08	3.5	9.5		2.5	.215	4.30		53	2400	103	-	20.0	0.0	7	3	n	
2 1474 71 1 1 24 171 2 4 171 2 6 6 6 6 6 72 6 6 72 6 6 72 6 6 72 6 6 72 6 6 72 72 72 72 72 72 72 72 72 72 72 72 72	143		4570			<u>«</u>	25	۾ ۾					36	ن	0		18.0		180		507	
2 1474 21 16 40.3 22 90 72 42 .215 4.07 70 53 2400* 100 1 2 3A44 21 16 44 15 110 116 10 53 2400* 100 1 2 3A44 21 16 44 15 110 10 10 10 10 10 10 10 10 10 10 10 10	144		;	106	49.9	32	9.5	97	(4)	.215	4.90	ű r	53	2406*	100	-	20.02	0:0	7	,	m	
2 3A44 21 16 40.3 22 90 72 42 .215 4.07 70 57 240C* 100 1 2 3A44 21 16 40.3 22 95 68 42 .215 4.03 70 53 240C* 100 1 2 172 21 1 1 26 57 42 .215 4.03 70 53 240C* 100 1 2 172 21 1 1 26 57 90 52 42 .215 4.03 70 53 240C* 100 1 2 400 106 A0.0 27 90 52 42 .215 4.03 70 53 240C* 100 1 2 717* 21 10 76 10 42 .215 4.03 70 57 240C* 100 1 2 726 71 10 76 10 10 76 10 10 10 10 10 10 10 10 10 10 10 10 10	144		1474	7.1		<u></u>	3 6	131					2.8	ü	Ö		18.0		180		207	
* FIRE IN STANDOFF - HIGH PRESSURE BRCKE VENTILATION EXCLAUST TUBE 2 410 1105 40.3 22 95 56 42 .215 4.09 70 53 2400° 100 1 2 117 21 11 26 58 48 42 .215 4.09 70 53 2400° 100 1 2 430 105 40.0 27 90 52 42 .215 4.09 70 53 2400° 100 1 2 430 105 40.0 72 90 52 42 .215 4.09 70 53 2400° 100 1 2 777 21 11 75 71 10 75 70 52 42 .215 4.09 70 57 2400° 100 1 2 75 777 21 6 72 90 56 74 72 113 800000 STANDOFF WITH FLAMES OUT EXCHEUST TUBE AND FLASH OUT STRIKER PLATE 2 400 105 40.0 72 90 54 42 .215 4.09 70 57 2400° 100 1 2 147 21 6 72 113 6 72 10 54 42 .215 4.09 70 57 2400° 100 1 2 400 105 40.0 72 90 54 42 .215 4.09 70 57 2400° 100 1 2 400 105 40.0 72 90 64 42 .215 4.09 70 57 2400° 103 3	145		65	104	2.0.	3.5	90	7.2	6.5	.215	4.07	10	53	2400	100	-	20.02	5.	7		P	
2 117 21 15 26 68 42 215 4.09 T0 53 240C* 100 1 2 117 21 15 26 68 42 215 4.09 T0 53 240C* 100 1 2 430 106 40.0 27 90 52 42 215 4.09 T0 53 240C* 100 1 2 430 106 40.0 72 90 52 42 215 4.09 T0 53 240C* 100 1 2 726 21 17 21 10 76 19 27 90 52 62 100 1 2 726 21 10 10 76 10 54 42 215 4.09 T0 57 240C* 100 1 2 726 21 10 10 76 10 54 42 215 4.09 T0 57 240C* 100 1 2 147 21 6 12 113 6 12 113 6 12 113 72 60 0 2 400 106 40.0 72 90 54 42 215 4.09 T0 57 240C* 100 1 2 147 21 6 12 113 72 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	145	•	JA44 IRE IN	21 STAND	OFF - HI	16 GH PRB		1.5 ROCKE VEN	- ∓				116	1.8	56		18.6		150		205	
* TANK PRESSURE BROKE WELD 2 430 106 40.0 22 90 92 42 .215 4.03 10 53 2400* 130 1 2 430 106 A0.0 22 90 52 42 .215 4.03 10 53 2400* 130 1 2 430 106 A0.0 22 90 52 42 .215 4.03 10 57 2400* 100 1 2 726 21 10 76 31 10 76 31 10 52 62 * FIRE IN STANOOF WITH FLANGS OUT EXCHUSE TUBE AND FLASH OUT STRIKER PLATE 2 400 136 A0.0 22 90 54 42 .215 4.03 30 57 2400* 100 1 2 157 21 6 12 113 2 400 136 APPRARED OUT BUT REIGNIED AT REAR OF ARTICLE AFTER ENGINE SHUT DOWN - TEST ARTICLE 2 400 106 *0.0 22 90 54 42 .215 4.09 30 55 2400* 103 3	146		6.10	106	90.0	3.5		£ £	Ç	.215		0	53	1 2	100	-	20.0	0.0	7	,	n	
2 430 106 40.0 27 90 52 42 .215 4.09 30 53 240C* 150 1 2 430 106 A0.0 27 90 52 42 .715 4.03 70 53 240C* 150 1 2 726+ 21 10 76 30 0 72 90 52 42 .715 4.03 70 53 240C* 100 1 2 726+ 21 10 76 37 90 54 42 .715 4.03 30 53 740C* 100 1 2 40C 106 A0.0 27 90 54 42 .715 4.09 30 53 740C* 100 1 2 167 21 6 12 113 2 400 106 *0.0 27 90 54 42 .715 4.09 30 53 740C* 100 1 2 400 106 *0.0 27 90 54 42 .715 4.09 30 53 240C* 103 3	146	•	1 12 ANK PRE	21 SSSURE	BROKE N	1. 18.0	26	er U					3.	٥	0		18.0		1.00		202	
2 430 106 A0.0 72 A0 52 42 .715 4.07 TO 57 2406* 100 1 2 726+ 21 10 76 77 40 52 42 .715 4.07 TO 57 2406* 100 1 2 726+ 21 10 76 77 700 54 42 .715 4.09 70 57 2406* 100 1 2 400 106 A0.0 77 A1	147		6.00	104	96.0	22	υb	, r	3	-215	4.03	3.0	53	24004	130		20.0		7	3	n	
2 726+ 21 10 75 70 52 42 715 6.03 70 57 2406* 100 1 2 726+ 21 10 75 74 74 * FIRE IN STANDOFF WITH FLAMES OUT SCANUST TUBE AND FLASH OUT STRIKER PLATE 2 400 105 40.0 27 00 54 42 .215 4.03 30 57 2400* 100 1 2 147 21 5 12 0 54 42 .215 4.03 30 57 2400* 100 1 3 STANDOFF FIRE APPEARED OUT BUT REIGNIED AT REAR OF ARIICLE AFTER ENGINE SHUT DOWN - TEST ARTICLE 2 400 105 40.0 77 70 54 47 .215 4.03 30 55 2400* 103 3	147					Ξ	2	5.5					173	1.8	51		18.0		180	×	205	
* FIRE IN STANDOFF WITH FLAMES OUT EXCHAUST TUBE AND FLASH OUT STRIKER PLATE 2 400 105 40.0 27 00 54 42 .215 4.30 30 57 2400* 100 1 2 147 21 6 12 113 * SIANDOFF FIRE APPRARED OUT BUT REIGNIED AT REAR OF ARIICLE AFTER ENGINE SHUT DOWN - TEST ARTICLE 2 400 105 *0.0 27 00 54 42 .215 4.00 30 55 2400* 100 3	5		:		A.D. O		9.0	5.2	2.3	.715	4.03	0.2	53	24064	100	-	20.0	0.0	7	3	m	
2 400 105 40.0 27 00 54 42 .215 4.09 30 53 2400* 100 1 2 147 21 6 12 113 * STANDOFF FIRE APPRARED OUT BUT RECRITED AT REAR OF ARTICLE AFTER ENGINE SHUT DOWN - TEST ARTICLE 2 400 106 *0.9 27 90 54 42 .215 4.09 30 53 2400* 103 3	53	2 11	TZE IN S	TANDO	PF WITH	1 n FLAKES	our Exe		S AND	7784 00	IT STRIKU	PLAT	. =	32	2. 9		13.0		190		201	
* STANDOFF FIRE APPEARED OUT BUT REIGNIED AT REAR OF ARTICLE AFTER ENGINE SHUT DOWN - IEST ARTICLE 2 400 105 *0.9 ?? 90 54 42 .215 4.19 30 55 2406* 100 3	149	٠.	204	136	A3.0	2.5	Ü		Č,	-215	4.33			100	100	-	20.0		~	3	m	
2 400 106 "0.0 27 40 54 42 .215 4.09 30 53 2406* 100 3	149	•	157 FANDOFF	21 FIRE	APPEARE	. E	12 BUT REIC		REAR	F ARIIC	LE AFTBI			، ت	ST	TCLB	18.0 DAMAGE		180		507	
	150		005	106	.0.0	2.2	Ę	1°	¢+)	.215	.93	3.0	53	2400*	103	, ,	20.0	3	7	s	n	
2 -1 71 12 26 74 86	150	٠ ٧	7-	21		12	92	\$		-7.5			144		86		18.0		75		152	

* SEE DATA SHEET		•										1									
1	CRIT	n	152	m	152	m	152	m	152	ю	152	P	152	n	152	-	152	n	152	F	152
IME INT Ax P REA *100)	CRIT IX		7.5	-1 4	2.2	-1 4	22	7 1-	7.5	, , , , ,	23	4 5	23	1, 4,	8	-1 4	23	7 4-	23	7 1-	23
PRESS TIME STISE STISE HAX P PRESS (PSI) (S*100)		٠.				• 5		0.0		1.3				2.1		3				.0.	
TANK PRES (PSIA)	FUEL NEPTH (TN)	20.0	18.0	20.02	18.0	20.0	18.0	20.0	18.0	17.0	19.0	17.0	19.0	20.0	19.0	20.0	18.0	15.0	16.0	15.0	18.0
7 1 2 F		-		-		-		-		2		-	ı	-		-		-		-	
F 76.	VIII	100	n	100	0	100	6	100	6	150	5	199	0	100	0	100	c	190	0	100	0
711. F) VEL) (FPS)		2450*	မ	+36%	a	24600	•	24000	ပ	2400*	8.6	*0045	2	\$3045	5	+30%	ů	2430*	a	2400	0
(LADE AEF) (LADE AEF)		53	52	53	75	2.5	25	53	6.4	5.3	110	5.3	146	5.3	132	53	72	53	7.9	53	54
	54) 340) (076)	30		3.0		0.		10		0.2		40		0.4		40		10		3.0	
- 7(475) SPAGC ANGLE) ([14] (DFG)	100 (2003) 100 (2003) 100 (2003)	4.33 30		4.33		4.03		4.33		9.03		0.03		9.01		9.93		9.30		0.03	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TOW DATE OF THE STATE OF THE ST	.215		.715		215		.215		.215		215		.215		.715		.215		.215	
(\$127 (TYOF		5		h 2		42	990			4.2		5.43		4,2		6.5		1,2		24	
15 mb 110 (95 m 5)	0 > 1	ų G	113	λ.	ç	59	, a		~	*0*	2.0	40.	4	+0 *	2.	*32	£		4.2		÷
TEMP FUFL BFG F)	110°C	30	۵ •	90	100	60	114 AUST TUBE	0	ge F	75		0.6	202	40	717	52	7	00	324	36	P1¢
TOAU PHASE	;	25	2	22	G	22	o INT EXPLA	22	AKTICLE	26	<u>.</u> .	2		3.5	ï	2.	•	22	a .	22	5
השל ה ממנ נהאר	:	A3.0		80.3		40.0	2 294 71 FIRE IN STANDOFF - VENT EXM	49.3	2 -1 21 PIRE IN REAR OF TEST ACTION	50.0		2 400 40 50.0		6.0.3		6.06		60.0		50.1	
TANK	11.L	196	21	104	12	106	71 STANDO	106	21 REAR C	3	7.	5	21	9.0	21	0.6	21	9.0	21	E .	1.
Line Line	11		4 7 4	4.30	211	004	294 B IN	007	1. N	000	7	003	ï	400	201	007	212	207	7.5	4.30	4774
NO TEST TYPE FUEL TANK	() <u> </u> () <u>() </u>		~	2	2	~	2 * FIR	•	~ ~ •	~	2	i	~	2	2		~	2	٨.	~	ν.
EST NO	7.0	151	151	152	152	153	153	154	151	155	155	156	156	157	151	153	154	159	159	160	160

のできた。 のでは、 のでは

P SEE DATA SHEET		:				:						:								-	
CRIT	CRIT *	,	152		152	m	152		. 251	6	152	m	152	В	152	'n	152		152	F	152
TIME INT MAX P RE4 (S*100)	CRIT	7 11	23	-1 -	23	1 1-	23	-1 4	23	1.1.6	23	13 4	2.3	10 4	23	6 2	23	* 80	97	3	47
98ESS TI 41SE MA (PSI) (S*	υ			-		0.0		0.0		0.0		1.7		1.6		2.1		1.3		2.4	
TANK DRES (OCTA)	FUEL NEDTH (TN)	15.0	15.0	15.0	19.0	20.0	14.0	20.6	13.0	20.0	18.0	15.0	10.0	15.0	18.0	15.0	13.0	23.6	14.0	20.0	14.0
1 4 4 1 1 4 1 4 1		-		-		-		-		-		-		-		-		-		~	
FTLL TYPF	7811	=======================================	n	133	0	103	•	ě	0	100	-	1001	0	100	c	193	0	100	•	100	0
(5011F) VEL) (505)	===	2,436	0	\$0 U\$ &	0	*9052	u	24364		2400	_	+30%	0	+30%	0	54004	u	2400	u	24000	O
(140g) (140g)	***		3	5	52	53	5.3	53	4.1 SBCCADS	53	64 SECONDS	5.3	99	5.3	7.5	51	5	53	7.0	53	4
4615	A40)	C. M.		6.		9 *		40	AT 1.5 5	-	AT 2.7 5	3.0		, ,		6.2		7.0		40	
SPACE BUGGES (TV) (DPG)	1 SLDS-4 AV	0.31		0.33		0.03		0.33	OCCURRED	00.0	CRRED	9.31				0.01		6,03		0,33	
, (THT)	27.0	.215		.715		.215		1215	RISB	.215	RISE	.214		.215		.715		510*		.215	
14041)	(VI)44T	£ 3		4,3		24		2.5	PERATURB	2.5	4.1 And temperature	2,5	VENT TUBE	, ,		, ,		4.2		4.2	
140 140 (July e)) v 11		# F	*6*	c.	3 +	3.6	ů.	AND TEMPE	7.2			ć, our	7.2	۲,	1.5	4.1	77	, tube	7.7	t u
16.59L	71 C 7 T V T V T V T V T V T V T V T V T V T	÷	747	6.0	216	7.5	414	K .	1195 RESSURB	75	616 RES S URE	9.3	-T-	9.0	979	60	r.	7.5	366 GRUST TU	7.5	245
7245 7445 0	711	,	16	2.5	•		-	22		2.5	۰.	٠,	7.0%	ç.	•	25	•		12 UT 830	2.5	11
1765 1765	,	40 40.0		49.1		F.0.9		7.9	FIRE IN STANDOFF - SECOND	F.9.	PIRE IN STANDOFF - SECOND	۶۵. ن	2 457+ 21 11 LARGE CLOUD OF SHOKE AND FI	40.0		50.0		59.1	2 255 + 21 12 FIRE IN STANDOFF AND OUT B)	6.0.7	* PIRB OUT EXHAUST TUBE
40 ¥	ורר דאט	0	2.1	•	21	0.6	72	4 04	TANDO	0.6	2.1 TANDO	0	21 VD OF	0.	7,	0.	,	0.0	2.1 TANDOF	0	? 1 Exchaus
LAUKI LAUKI	1551 II 1740)(₁ 2	+ 654	L04	4 4 1 +	899	7	300	PIL SI	3.70	414 IS IN S	ההי	2 457+ 21 LARGE CLOUD OF	130	4.4	£0.0	0	400	2 255 + 21 FIRE IN STAND	2 400 30 5	? ?9* + FIRE OUT E
HOAL BOAL LEBA	7597	•	~		۲.		€:	2	2 FIR		? • FIR	i	~ ጟ	1		~	~	2	2 • FIR	i	? FIR
TEST TYPE FUSL TANK FUFL, TDAJ NO TEST TYPE TVDF VOL PHREE (CAL)		161	141	152	162	161	163	154	154	165	165	165	156	16.7	157	164	15.5	169	169	170	170

A SECTION OF THE PROPERTY OF T

* SEE DATA SHEET		•													-							
CRIT	CRIT	n	152	m	152	8	152		m	152	m	152	m	152	7	152	m	152	~	152	2	152
INT O REA	_												STANDOFF.								3	
TINE MAX	CRIT TX		47	17	44	7	4		7	44	7	4	N STAN	1.0	17	45	7	46	7	47	41	6
PRESS RISE (PSI) (1.2		6.			٠.		.5		RISE IN		11:0		1.5		1.6		1.5	
TANK OPES (PSTA)	FUEL DEOTH (IV)	20.0	14.0	15.0	18.0	15.0	19.0		15.0	15.0	20.0	19.0	20.6	13.0	20.0	18.0	15.0	14.0	15.0	15.0	15.0	14.6
3011 1616		-		-		-					-		ള! ~		-		-		-		-	
FILL		123	c	133	0	100	7		100	0	5	-	100	Ö	12	6	150	c	100	4ء	133	55
	7117	2400	6	24364	0	2400*	0		*3072	ق	2436*	o	JN. JANK. 2400°	J	-3652	ພ	*30%	ن ت	90000	e e	24364	56
(TABE AEL) (TABE AEL) (Eas)	<u>}-</u>	53	÷	53	7.2	F 3	63		2 4	99	5.3	. A.S.	5.81Sb 5.1	122	5.3	0	5.1	÷	5.5	137	5.3	145
10) 100(E)	(4) (2 fc)	0		0.		0 -			4.0		9.6		BUI NO PRESSUR		4.0		6		0,		4.0	
SPACE ANGLE)	5L0 6941	9.00		0,33		0.03			۰. ۱۱۹						3.03		9.63		0.03		6.93	
14F0 14TCK 114)	(27)	. 215	;	.215		.215			-216		216.		11.5		215		215		215		215	
(Statk (TYOE T	= :	£ 7		4.2 6.2		3			ę,		£2		KISE IN		7.5		12		6.7		6.3	
ຼີເ	=				,	1.5	۲,		•	-	2	9 9	75 90	4.7 OCCURRED	304	3 \$	7.5	ų J	47.	? .	* * *	4.
TEMO TEMO FIEL TWO ACC FOR	- > .	<u>د</u> ۲	.,	2.2	454	0.0	7		c 6	664	2.0		a:		74	£ 51	4.4	7	3.0	9613	3.9	221
TOY T	115.	3.5	1,	3.7	~	2.5	•	TUBE	į.	υ		10 3	3.5	Z,		;	2.5	Ę.	3.5	ī		,
FUEL VOL GALI		k0.0	1	2 430 53 49.3 22		40.1		FLAMES SHOT OUT VENT TUBE	6.0A		5.84	4. 000	GC 0:09 Or 000 2	RISE	46.U 27		6.54		6.9.3		40.3	
7 7 7		0.	21	<u>.</u>	1.	0,	10	₽: 3:	0 •	2.1	9.6	12 S	9	2.1 ESSURE	2 400 40	71	- 00	1,	e	2.7		1.
للأهدا	110	£0+)	+ 161	00,	5.10.+	413	404	SES SE	604	7	130	461 + 21	130	2 194 SECOND PR	00.	7	3 G F	# #	400	+ 5.43	554	4553
NO TEST TYPE TYPE TO CO.	ر ـ ا	67	- 4	~	€.	~	~	• (~	~	•	رد د کی	~	srcc	~	~	6.	۲۰	2	^		, ~
0A 40	EST 40	171	171	172	172	173	173	!	174	174	175	175	176	176	177	177	174	174	179	173	150	190

PRI FOAM IN STANDOF 10 106 10.0 10 106 10.0	• • • • • • • • • • • • • • • • • • • •	TION TIC													SHEET
11 2 10 12 6 93.0 12 1 2 1 21 13 2 -1 21 14 2 -1 21 15 10 PPI FOAM IN STANDOFF 14 2 -1 21 15 10 PPI FOAM IN STANDOFF 14 2 -1 21 14 2 -1 21 14 2 -1 21 14 2 -1 21 14 2 -1 21 14 2 -1 21 14 2 -1 21 14 2 -1 21 14 2 -1 21 14 2 -1 21 14 2 -1 21 14 2 -1 21 14 2 -1 21 14 2 -1 21 14 2 -1 21 14 3 -1 21 14 5 -1 21 14	• • • • • • • • • • • • • • • • • • • •		760		5L0 5057	SH) AMP)	1190	411 V11	7817 VIII		FUEL JEPTH (IN)		CRIT	C811	
1 2 -1 21		٠ ١		216	4.93	· · · ·	7.7.	2400	130	-	20.0	0.0	7-	7	
42 2 410 164 40.2 41 21 21 21 21 21 21 2		-1 -	-1 -1 REACTION BETWEEN INCENDIARY		AND FUEL		0	J	•		19.0		61	152	
42	i i	96		.215	6.33	0	53	*30%	101	-	20.0	0.0	-1 1	7	
143 2 10 PPI FOAM IN SIANDOFF 144 2 429 125 40.3 146 2 429 125 40.3 146 2 429 125 40.3 145 2 420 125 40.1 145 2 400 125 40.1 146 2 400 125 40.1 146 2 1 21 147 2 1 21 148 2 1 21 148 2 1 21 148 2 1 21 148 2 1 21 148 2 1 21 148 2 1 21 148 2 1 21 148 2 1 21 148 2 1 21 148 2 1 21	•	*0 -1	_				e	o	0		19.0		11	152	
A3	i														
A	i	٦c	16	615.	4.09	0	e.	40042	100	-	20.0	0.0	7	7	•
10 PPI FOAM IN SIANDOFF 15	; ~	991					•	6	0		13.0		1.8	152	
14	~	:						•							
A4		٠ ت	.	113	۴.3	43	.	5400	ב ב	_	20.0	0.0		1	•
10 PPI FOM IN SIMILOFF 15 2 10 10 41 1 10 PPI FOAM IN SIMILOFF 14 2 40 10 40 1 14 2 2 21 21 21 21 21		1- 261	_				ø	0	0		1. c		1.6	152	
185 2 4.3 1.3 4.1 1.5 4.1 1.										:		* * * - * - * -			
	ţ-,	6 00	2 4	.215	4.1)	4.0	53	*0 G % C	103	-	50.0	0.0	7	7	•
	1 :-	1. 94					*	٠.	•		18.0		1.8	152	
														1	
2 -1 21 • 10 PPI FOAM IN STANDOFF			2.4	516.	4.73	c r	53	2466	100	-	20.0	0.0	7 7	7	•
. 10 PPI FORM IN STANDOFF	7	44 -1					9	0	0		16.0		1.6	152	
											1				
147 2 407 106 4.3		• 06	£ 73	-512	4.30	33	53	2436*	233	-	15.6	0.0	5	m	•
12 35 2 241	, r-	- 3 4.1					12	9	C		2.0		1.8	152	
. VAPOR SHOT - FOAM IN TANK	A FOAM	M DAMAGED	£											***	
		e	23 b	.215	4,33	ţ	53	*3042	200	-	15.0	0.0	4	,	•
15 1 2 14 21	0	۳ ا	u·				10	ت	r		2.0		1.8	152	
* VAPOR SHOT - FOAM IN TANK- F	IK- POAM	OAM BURNT							1			•		•	
र के उत्तर स्ति है	11	•	3	.215	4.33	30	53	\$30¢2	200	#	15.0	0.0	-1 4	F 7	•
149 2 447 21		- 7 - 7 - 6					1.0	0	-		2.0		1.0	152	
* VAPOR SHOT - FOAM IN TANK -		POAM BURNT	BADLY		1						1		1		
r.a Atl 908 5 001		E 0	C 7 7	-12.	4.13	5	5.5	243642	203	-	15.0	0.0	-1 4	m	•
रिन ३ ५५० च	c	-1 15	ď				15	Ü	0		2.0		1.6	152	

* SEC DATA SHEET		:						! ! !																; ; ; ; ;	
CR17	9	· ·	152		n	152		6	152		6	152	6	152		•	152	6	152	6	2 5 1	9	152	9	251
TIME INT MAX P REA (S*100)	1141	3	9.1		3	1.8		~ ~	0		~	•	3 5	0		٠,	0	3 2	6	5 2		10 2	•	2 6	0
215F		0.0			0.0			0.			3.2		2.2			2.6		3.0		2.2		2.7		6.5	
TANK DDES (PSIA)	<i>-</i>	15.0	.0		14.0	2.5		20.05	14.0		20.02	18.0	20.02	18.0		20.0	18.0	20.0	18.0	20.0	18.0	15.0	14.0	15.0	16.0
1795		-			-			-			_		-		i	~		2		~		-		-	
F 11. L	111	203	c	1	203	0		130	0	1	103	•	103	2		100	0	100	0	100	•	100	c	100	0
CYPE VELLE	7311	3692	ပ	•	.3052	ပ		\$400	n		10012	•	2400	0	15	•00%	o	2430	O	\$2072	c	2400*	•	5400	0
(FYPE	- 1	5.3	=	1	53	23	1	5.3	;		5.3	7	5.5	7	STRINGE PLATE	5.3	7	53	7	23	7	53	C	53	0
1475) 14765) 1755)	(by)	0.			× ×		1	Ę		1	3.)		10		TO STRI	3.0		4.9		Ei F		0.5		0.	
SPACE ANSI	(Feb.)	5			٠.1			f. 33			6.03		0.09			60.3		0.33		6.03		0.93		9.09	
' '≿≎	(14)	.715			516.			512			-215		215		NEVER GOT BACK	.215		-215		.215		.125		.125	
C STOTEGO (TYOF THE	(HOTTICETY COMP CHAPT	•		50 TO	Ç		•	Ç,			Ç				BUT	4.2		<u>;</u>		Ç		÷ ,		24	
ζ.	71.	ý	1,	DAMAGE	ž	1,		÷	7	1	. ^	7	7.6	7	TEST ARTICLE	7.0	7	7.6	:	7.6	7	4.7	#	4.7	;
1990) ta 1986 Omi 758a Seal amai	-> (۲,	~	LITTLE		•	1	S.	v	MING TES		0	ůc.	o	AR OF TE	פר	0	00	O	60	6	90	Ö	* 0 c	E)
_	C 4 I		•	TANK		P-	TANK		1-	MAN PUR	35	7	3.5	7	AT REA	2	7	2.5	-	25	7	2.5	U	2.5	د
(915)				VAPOR SHOT - POAM IN	•		VAPOR SHOT - FOLM IN TANK	20.0		PLEXICAASS WINDOW BPCKEN DU	95.3		90.9		EXTERNAL FIRE STARTED AT RE	10.3		0.00		99.0		A1.3		A0.3	
			ŧ	1,	196	2.1	7.	115	21	S WIN	۳ ۲	21	135	2.1	FIRE	521	2.1	1.45	11	135			21	7	1,
יורר יורר יורר	COTT ULL TT ATMO	2 436 136	+ 69 +	OR SHC	100	12 424.	SHC SHC	433		KIGAS	003	0	100	-	ERMAL	001	6	50.5	. 0	66.	æ	003	0	6004	6
1531 TYPE TYPE TYPE TYPE TYPE TYPE TYPE TYPE	0 4	2	~	VAR		~	•		~	•	į	۲		~	EXT	~	•	2	~	2		2			~
1651 10		191	141		192	192	1	-	193	1	761	701	195	195		195	196	197	~	108		201	201	202	202

and on the condition of the factor of the safety and safety and the safety and the safety of the saf

DATA SHEET																			·		
,	9-4		152	•	152	9	152	9	152	9	152	œ	152	9	152	9	152	•	152	9	152
32		~		2		2		2		~		2		2		2		2		~	
4AX B	CR17	7	0		0	-	0		0	2	23		23	22	23	11	23	9	23	=======================================	23
QTSE MAX B (PSI) (\$*100)		2.3		2.6		2.6		7.5		3.5		2.3		2.2		1.3		2.6		1.2	
(DS (A)	FUEL JEOTH (IN)	15.0	13.0	15.0	15.0	15.0	19.0	15.0	18.0	15.0	19.0	15.0	14.0	15.0	14.0	15.0	14.0	15.0	19.0	15.0	13.0
1404		~		~		-		-		-		-		-		7		-		-	
1 400		133	•	153	0	103	. 6	100	FIRE	103	0	103	. 3	100	9	160	6	123	9	100	0
	CELT VIJ	2406	0	2436*	ပ	+30%	c	2410*		+3052	g t PROJECTILE	26.36	ပ	2400	U	20042	ບ	20092	Đ	-3052	ں
(14A 30A1)			7	5.1		5.5	C	15		5.4	TO PROJ	ĩ	9	53	13	53	6	5.3	c	5.3	c
12(6)	S4)			3.5		c			NTER	•	SD DUE	=		33		3.0		13		Û.	
(3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	_	(0.0)		0.0		0.73		0.01	BUT NO	9.11	- TANK DAMAGED DUE	1.11		0.63		0.90		0.33		(1,0	
11.15	C 4 ~	1,75		.126		124		125	151	175		.176		.126		.125		.125		.215	
	(Fac)			Ç		6.3		2.4	L OVER	Ę	SECOND PLATE	24		2.4		4.2		4.2		2.4	
130 (764 6)		;	7	27	7,	6.7	7	2.5	1	1.5	 36		7		7		7	6,3	7	4.7	7
ادر و) (11.0	0 C	'n	7	.	c. c	U	90	2	5.	Q	0.0	ပ	0.0	O	33	v	60	c	00	c
Juliuc L		* C-	_	22	t.	2,5	c	6.	~	6.6	nt - Si	7.2	L	26	.	6.	, U	3.2	L	3.	ت
17.00 (28.0)				, 0,		46.0		50.0	4	1 -	PROJECTILE DID NOT EXIT -	50.2		53.3		43.3		F.0.3		69.3	
<u> </u>	JL L 17 40		1,	1	51	7	. <u>.</u>	-	21 FAILU	.1 kg.	7. Lis 010	5.1	2.1	7	27	=	# .	41	21	7	2.1
 	CPIT JUL IT ATMO	**************************************	,	430	e:	133	•	130	o PLETE	\$90	DEC III	400 81	6	200	G	4.00	, c	5.5	0	4.33	r
No leaf that UN	595G (٠.	~	6	2	•	6	• 5	~	- 084 084	6)	^	6.	~	2	~	2	C ·	~	~
- C	EST	203	203	204	204	502	502	205	204	207	202	278	204	209	200	210	210	211	211	212	212

Continued to the continued of the contin

* SEE DATA SHEET																				•	*
CRIT	C811	* M	152		152	100	152	n	152	n	152	m	152	e i	152	m	152	E	152	100	152
TIME INT MAX P REA S*1003	CRIT	3 2	0	3 2	0	3 2	0	3 2	6	3 5	•	9	0	3 2		15 6		9 %		9	1
94ESS 41SE (PS1) (6.6		6.4				9.0		6.9		6.2		6.6		9.51		22.8		6.9	
PRES (PSTA)	FUEL OFPTH (IN)	15.0	14.0	15.0	13.0	15.0	19.0	15.0	19.0	15.0	18.0	15.0	19.0	15.0	18.0	15.0	19.0	15.0	13.0	15.0	1 B. C
1 4 DE		-		-		-		~		~		-		-		~		-	٠	-	
1466	7817	100	0	100	9	100	•	100	9	103	•	100	•	103	•	193	6	103	•	100	'n
VEL	2.7	2430	9	*30%	ပ	-0042	ں	2400+2	6	24000	J	2400*	ن	-3042	6	54000	6	2000	ပ	-0052	ن
(1776 VEL) (1778 VEL)	-	53	c	2.5	•	53	3	53	•	53	0	53	?	53		53	131	2.5	212	53	5.7
(¢ -	0		02		6.		2		4.9		4.0		10		4.9		2		0.	
SPACE ANGLED	4 (583)	27.33		27.03		27.10		27.93		27.93		27.03		27.30		27.30		27,11		27.09	
7112 C141	pa 1	.215		.715		. 215		.215		.215		.215		.215		.215		.215		.215	
(1405	(V19847 (FBC) (C04)	,		2.4		5		23		23		Ç		4.7		124	BAX	r r		4.2	
tues es tors es	¢ > '		7	67	7	1,1	7	Ş	7	· · · · · · · · · · · · · · · · · · ·	ī	4.5	Ŧ	5	7	;	7 4. REAR DRY		2	5.5	a.
יבט בי בחבר	114	. Dr	•	90	O	36	c	00	9	* 7	ی	30	, د	5.8	0	1		ę.	c	60	c
35170	111	25	-	26	·	25	د	12		2.5	~	25	r.,	22	۴.	35	~ E	2.5	3	6.	.
10VC VOL VOL		24.3		23.1		2.1.3		24.0	7 3 21 FIASH FIRE AT ENTRANCE	23.0		23.3		23.0		23.0	2 291* 21 FLASH FIRE AT ENTRANCE	27.9		37.0	7 12 +662 2
	120	=======================================	12	3.5	1,	F	12	F	21 SE AT	=	21	31	5.	Ė	21	7	21 18 AT	11 00	+ 21	<u>=</u>	7.
40r	7 1 1 A	2 400	e	007	e	004	0	007	SH FI	000	6	00.	ĸ	200	0	200	29T+	430	308	4.30	+ 6 5 2
NO TEST TYPE FUEL TANK	Spec fatt yll	2	€.	2	~	2	~		. Ž	2	~	2	~	2	~	~	~ ₹	2	~:		€ ;
EST NO	-	213	213	214	214	215	512	216	216	217	217	213	512	219	612	220	220	221	122	222	222

Section of the Section of the Section of the Section S

* SEE OATA SHEET																					
CRIT	C411	s	152		152	n	152	9	251	-	251		152	æ	152	P	152	-	152	7	152
REA		~		~		2		2		2		N		~		٠	×				
TINE MAX P S•100)	CALT		~	•	•	m	F		33	*	33	3	33	3	33	5	33	3	•		0
ORESS TIME RISE MAX P (PSI)(S*100)		7.6		9.6		7.4		9.2		7.8		1 60		10.1		7.6		8.8		10.6	
TANK PRES (PSIA)	FUEL	15.0	14.0	15.0	19.0	15.0	16.0	15.0	18.0	15.0	19.0	15.6	18.0	15.0	18.0	15.0	19.0	15.0	14.0	15.0	14.0
719E		-		-		-		~		-		-		-		-		-		-	
7 12 1 7 7 P E	CRIT VIII	100	6	103	•	100	•	103	0	103	ຄ	103		193	0	100	6	153	9	100	ø
(TROJECTILE) T (TYVE VEL) (FPS)	11A 11A	2400	ů	54000	•	*30%2	0	2400*	U U	54000	0	-3000	•	2400	0	2400+	6	2400+	u	2400	u
takaje Ityve	CATT	53	c	5.5	*		0	53	m	53		5	c	5.3	3	5.5	33	53	324	53	144
116 1 116 (E) 116 (S)	(Day)	0.7		=				3.0		36		36		0		0,		e r		5 2	
SERGE ANGLES (IN) (PEG)	(SL154 (FREA &	27.03		27.49		27.39		27.33		27.09		27.03		27.10		27.03		27.43		27.03	
THICK .	10N A C O J	.215		216.		215.		.215		.215		.215		-215		.21		.215		.715	
1 ST91	(VIA21) (595) (594)	24		i g		4		5.3		24		Š		3		3				6.3	
1540 140 1765 F)	£ >		7	20	7	0,	7	9.9	7	5.0	-	5	7		7	6,3	414	3	111	3	316
الديور دردور دردور	1100	06	۴-	900	0	9.9	6	96	ā	1.7	ú		e	20	c	9 5 6	o	9.0	ï		ħ
_	112	2.5	J	26	u	25	4	3.5	U		7	22		2.5	c	22	7	32	•	22	•
TEST TYPE FILE TANK FUEL TOAJ NO TEST TYPE VOL CASE		100 A1 24.0		21.9		0.40		23.7		23.0		21.0	2 9 71 TANK EXIT PLATE DAMAGED	31.3		27.0		24.0		E * P.	4 12 + 282 2
TANK	טרר קייא	-	2.2	==	7	F	12	12	21	31	1,	E	r PLAT	7	7	7	12 +	0.	12 +	ů.	7.
1 A D C	11	203	0	1004	c	6.30	0	007	6	659	ø	430	K BXX	430	e	929	166 4	004	264 1	064	+ 2 1/2 2
170F	Soce fold ull	2	•	~	~	~	~:		~	~	∾	~	- 1.	2	Ņ	2	•	2	<i>c.</i>		٠
TEST NO	1651	22.1	223	224	428	225	22.5	226	226	225	227	224	822	522	526	230	230	231	231	212	232

TIME INT SQLT & SEE MAN P REA I DATA SWIDD)	CPIT CRIT	**************************************	0 152		7 152		1 152	-1 2 6	7 152	, 2 6 •	0 152		0 152		0 152	n 3 3	7 152		251 / 2
98ESS 91SF (1251) (12.2		9.0		11.4		-1.0		12.4				13.0		14.6		10.0	
TANK PPES (OSIA)	FUFL JFPTH (TN)	15.0	14.0	15.0	14.0	15.0	14.0	15.0	19.0	15.0	19.0		3.61	15.0	15.0	15.0	14.6	15.0	18.0
E TYPE	j. pa	7	c		•	- 0	•		·		6					1	5	2 6	
1116) FILL 1116) FILL	U >	32350 10	6	661 -96%	,	201 .70%	3	101 436%	•	2466* 133	ပ			2400* 139	ی	2,000	ي	2430* 103	ú
(1785 VEL) (1785 VEL) (F05)	-	12.	C 3.	51 %	3	8.8	99	53 24	7	952 85	0	7,6		2.15	3.	93 24	11	54 24	52
THICK ROAD ANGES (117) (117)	(7(1) (1) (1) (1) (1) (1) (1) (1			.215 27.1 =0		215 27-43 80		SIANT AT REAR OF TANK BAD STREAD ALL DURA.		.215 27.33 10		IO IANK AND PROJECTULE JAKE.		.215 27.93 19		215 27.03 10		.215 27.13 70	
(1 STOF	(501) (501)					,		1.0°. JANK. 6.		6.7		E TO IANK /	•			29		27	
Sign (a Sign Office (all) Arako Arako	0 > ; - ;	00 44	2.	25 .00		. 5	P. 134	41. AI. 28AB	~	90	_	Or St.		*5 00	72 l 2°-	95 PC	-3: 17	4 S	4.2
Sign) To Bolled Fig. The L		٠	•		•.	2.			-	2.		ĝ:		. 25	•		•		7
בעבר ד עמר מינ נהאנו		-		27.3				2 400 10 21,0		54.0		71 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.4.6		23.9		23.3	
	11. 11.	C 20	21	9.	21	9		01	1.2	2.0	21.			E	1 2	0,	1,	6.	12.
Tall Live	111	2 490	+541 2	2 490	+241 2	2 400	+ 262 - 3	2 409	0 2	2 430	, a 2005.	400		2 .00	+95+ 2	014 6	6	2 430	2 110
40 TEST TYPE FUEL TANK	0 L.	233	223	234	234	235	235	236	236	237	237		23.6	239	622	240	240	241	241

DATA SHEET		• • • • • • • • • • • • • • • • • • • •	•																_	1	
	CRIT	7	152	7	152	17	751	17	152	7	152		152	17	152	4-	152	1-	152	-	152
RISE WAX PREA (PSI)(S*100)	=	16 1	•	20 5	•	- n	•	16 1	.3	1 31	0	1 11	9	-	•	4	•	3	•	7 3	•
R15E (051) (20.0		10.3		0.,		25.2		4.6		9.6		9.9		7.3		3.0		A.2	
PSTA)	FUEL JEPTH (IN)	15.0	18.0	15.0	18.0	15.0	16.0	15.0	14.0	15.0	18.0	15.0	18.0	15.0	19.0	15.0	.9.0	15.6	19.0	15.0	•
140		_		ь,		-		r		-		-		-				-		-	
TYPE	(C)	602	0	100	6	100	6	163	•	103	e .	101	σ.	62	•	C91	•	63	•	100	•
(FPS)	1177	2405	0	2400	.	-30%	c	003	0	-00%	ر ن	21.01	9	36%	ت	24,10	Ü	2,400	L	54000	•
1170			254	£.	540		c	2.5	27.5	53	151	25	4.7	- 5	ž		σ	53	5	53	į
46(6)	(A (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	0 1		0		30		J.F		0.5		6.		3.0		55		£ .		30	
SOACE ANGLED	F. C.	27.03		27.03		27,00		27.93	üct	27,33		27.11		27.03		27.03		27.03		27.90	
THICK	- '	. 1.5		.214		512		.215	EXMAUST TUBB DUCT	.215		212.		.715		.215		.715		.215	
(L voe	*	ÿ		-	TANK	ij		3		2.7		C7		3		Ž.		; ;			
THO (OFC F)	100	6	\$23	0	171 DOPF AND	42	7		110 TANK AND	0	4		177		151	:	1,4	66	174	90	,
נשנים נו פונים	1 >	.00	r. TUBE	•	IN STANDOPF	000	7	3.0	GB 70	90	7	De.	•	7.3	;	j,	F.	ur c	P)	50	•
Javno	5934	22	our EXI	• • •	-1-	12	ī	1.	- Pag	2.5	ï	2	7	2,5	7	5	7	25	ï	25	,
196 1940 1940		21.3	PIRE IN STANDOFF AND OUT	7.3				33.3	2 -1 11 EXTERBABLY LARGE FIRE			21.3		6.16		23.5		22.3		3.3	
1 (0)		* C:	21 STANDO	12	2 -1 21 LARGE EXTERNAL PIRE	32	1.	12	7.1 LY LAR	2.	;	125	1;	22	1;	2.5	1,	- 2	¢.	12	ŗ
40 ×	11411	433	AR IN	004	-1 RGB EX	4.30	7	400	-1 Tersage	35	7	200	7	430	7	139	7	490	7	664	
17.5	1591		- 71	~	~ ₹		^:	62	_	2	, ~	12	2		·		~	~		~	^
VO TENT	FS 7	* 53 3 3 3 3 3 3 3 3 3 3	243	244	244	245	542	246	246	242	24,7	24.3	248	543	549	250	250	251	251	252	252

					1					i	•		7	٦ - ١ - ١	, 556
152	14.81	P-91	4	.:	365 0 3	365					•	01. 2, 005 6	2	D 3	254
ı	•	12.	-	2	200	ۍ ح	42 ,215 27,03 10	42 ,215	A 5 64	,,	,,,				
-	T	15.0	-												
1 1 1 1 1 1 1 1 1 1											•		τ	2 -1 (1	253 2
7.7	•	19.0		0	155 0 0	155			٠ •	•	7		•		
152	4	•						;	ŗ	:		2 400 12 21.	2°	909	553
4-	53 2406* 100 1 15.0 22.4 11 1 -1	15.0	-	100	\$400	5.3		216.		***			: : : :		
	**************************************		•	•	****		(030) (200)	(71) (70)			-		C .	<u></u>	1631
×	, H	JEOTH		C 411 V 111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	791 VI	TO T (POET AND) (SLOSM) SOIT SAIT COIL	reery and	; ;	1.0	1101		176.6	707	THE LEST DEED 153
T197		. .			:		C (AL)	9.10	(טיני פי)	افرا فا	_	(340)		-	1621
I DATA SHEET	TOUR (STRIKED SLATE) (STRIKE TYPE TYPE DRES BISE MAX PREM I DATA FINE THE THICK STAIN AND THE STREET FINE THE THE THICK STAIN AND THE STREET	PRES (PS1A)	I A DE	1 16	V513	ITABE	594G* ANGLE)	TYPE THINK	3 (7)	لديرا	1001	1277 1977 1977 1977 1977 1977 1977 1977	X 7 7 7	756.5	16/72 TYPF
335 . 118	がいた かいかい いきに しきたち ひからなり うちゅう しくりし コード・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	>										•			

された後のではなるのですが、1271 1985で

APPENDIX II

POSSIBLE CONTAMINATION OF JP-8 TEST BY PREVIOUS JP-4 TEST

Although it was standard procedure to completely wash the test article with water between tests to remove all fuel and fuel vapor, it was of concern that the first shot in a JP-8 test series may in some way be contaminated by the previous JP-4 test series. To investigate this possibility, the standoff pressure rise of several "first shots" of a JP-8 series which were preceded by a JP-4 shot was compared to the standoff pressure rise of the "last shots" of the several JP-8 series of interest. The results of the analysis is shown by Table XIII. Since no significance is shown, we concluded that the JP-8 tests were not contaminated by previous JP-4 tests and the water wash was sufficient.

TABLE XIII

MAXIMUM STANDOFF PRESSURE OF
FIRST VERSUS LAST JP-8 SHOT OF A SERIES

Firs	t Test	Last	Test
Test No.	Pressure Rise (psi X 10)	Test No.	Pressure Rise (psi X 10)
13	167	18	27
25	87	30	113
43	44	48	76
64	38	68	6
80	40	85	58
128	32	133	48
163	32	168	48
Variance	2515		1181
Mean	62		54
F Ratio - 2	.1 T Va	lue - 0.43	T _c - 1.78

APPENDIX 111

OXYGEN DILUTION DUE TO INCENDIARY FUNCTIONING

The projectile velocity, impact angle, and strike plate thickness were determined by tests to provide maximum functioning in the dry bay of the incendiary mix ass liated with the CAL .50 API. This was done to provide the "biggest match" possible for fuel ignition in the dry bay. Since the incendiary is fuel rich, some oxygen in the dry bay may enter into the reaction. In addition, the products of the reaction may tend to dilute the oxygen concentration. If the oxygen concentration is reduced to below 12% by volume, no fuel reaction car be expected (Reference 4). The following analysis addresses these questions as a first approximation, and the results are presented in Figure 13. As may be seen in this figure, all the test articles and associated dry bays used in this program should have had sufficient oxygen to support a fuel reaction. This figure gives minimum values of $\mathbf{0}_2$ remaining, and since only a small part of the incendiary reacts in the dry bay, the results are conservative. The following calculations were used to develop Figure 13.

The incendiary mix, IM-11, of the CAL .50 API weights 1.0 gram and has the following composition:

For complete combustion of the incendiary mix the following reaction must be considered:

Gram Moles initially present in 1.0 gm of incendiary

$$\frac{.5 \text{ gms. Ba } (NO_3)_2}{261.3 \text{ gms./gm. mole Ba } (NO_3)_2}$$
 = 1.92 x 10⁻³g; moles Ba $(NO_3)_2$

$$\frac{.25 \text{ gms. Mg}}{24.3 \text{ gms./gm}}$$
 = 1.027 x 10⁻²gm moles Mg

$$\frac{.25 \text{ gms. Al}}{26.98 \text{ gms./gm mole Al}}$$
 = 0.927 x 10^{-2} gm moles Al

gm moles 0_2 present in 0.5 gm of Ba $(N0_3)_2$

$$\frac{3 \text{ moles } 0_2}{1 \text{ mole Ba } (N0_3)_2} \times 1.92 \times 10^{-3} \text{gm moles Ba } (N0_3)_2$$

= 5.76 x 10 $^3 \text{gm moles } 0_2$

gm moles N_2 present in 0.5 gm of Ba $(N0_3)_2$

$$\frac{1 \text{ mole N}_2}{1 \text{ mole Ba}} \times 1.92 \times 10^{-3} \text{gm moles Ba (NO}_3)_2$$
= 1.92 x 10⁻³ gm moles N₂

Total gm moles 0_2 required for complete reaction

Ba requires .00096 gm moles
$$0_2$$
 gm moles 0_2 gm moles 0_2 and 0_2 0_2 0_3 0_4 0_4 0_5 0_2 0_5 0_5 0_5 0_5 0_6 0_7 0_8 0_9 $0_$

Total gm moles of additional 0_2 required from the air

.01304 total gm moles 0_2 required gm moles 0_2 existing in mix additional gm moles 0_2 required

Vol. of O_2 needed from air at 25°C per 1 gm incendiary

$$V_{0_2} = \frac{nRT}{P}$$

 $V_{\Omega 2} \approx \text{(.00728 gm moles 0}_2 \text{ reguired)}$

$$\left(\frac{.08205 \text{ atm - liter}}{\text{gm mole - }^{\circ}\text{K}}\right)\left(\frac{.0353 \text{ ft}^3}{\text{liter}}\right)\left(\frac{.296^{\circ}\text{K}}{\text{l atm}}\right)$$

 $V_{0.2} \approx 6.28 \times 10^{-3} \text{ ft}^3 \text{ needed from air}$

Vol. of N_2 released during reaction at 2000°K

 $V_{N2} = (.00192 \text{ gm moles N}_2 \text{ released})$

$$\left(\frac{.08205 \text{ atm - liter}}{\text{gm mole - }^{\circ}K}\right) \left(\frac{.0353 \text{ FT}^3}{(1 \text{ atm})}\right) \left(\frac{.0353 \text{ FT}^3}{1 \text{ iter}}\right)$$

$$V_{N2} = .0111 \text{ ft}^3 \text{ N}_2 \text{ released}$$

Since the following oxides will be solids they will not dilute the dry bay oxygen:

Al₂ 0_3 Boiling Point = 3500° C

Ba O Boiling Point = 2000°C

Mg 0 Melting Point = 2800°C

Now let V_R = the final O_2 volume % in the dry bay - FT^3 V_D = Volume of the dry bay - FT^3

 $V_R = \frac{.21 \text{ V}_D \text{ (initial 0}_2 \text{ Vo}^3.) - .00628 \text{ FT}^3 \text{ (0}_2 \text{ needed from air)} \times 100\%}{\text{V}_D - .00628 \text{ FT}^3 \text{ (0}_2 \text{ needed from air)} + .0111 \text{ FT}^3 \text{ (N}_2 \text{ released)}}$

$$V_R = \frac{21 \ V_D - .628}{V_D + .00482}$$
 This equation was used to develop Figure 13.

Figure 13. Final Oxygen Volume Percent in Dry Bay After Incendiary Reaction

APPENDIX IV

SAMPLE STATISTICAL PROBLEM

We generated a sample set of data to obtain some insight into the results that could be expected from the use of statistical methods. Twelve random numbers (A in Table XIV) were selected, ranging from 0 to 35, which was the expected range of overpressure for the standoff volume. The numbers for comparison were defined as B = 0.6A. Therefore, by definition, the difference between any set of A and B numbers was 40%. It was then assumed four tests were conducted giving the first two responses of both A and B. A statistical analysis was performed on the results. This was repeated assuming eight additional tests. In the final step it was assumed that twelve more tests were conducted. The statistical results for the sample problem are given in Table XIV. As may be seen, the defined difference between A and B was not shown in the calculated T value until all 24 tests were conducted.

Another sample problem was also conducted (results not shown) with the same values of A but with B=0.8A. The same procedure was applied, and even after 24 tests the T value did not show the defined 20% difference between A and B as significant.

The foregoing example was generated to illustrate that it is difficult to prove with high confidence a difference between two fuels if that difference is relatively small and only a limited number of tests are conducted; the smaller the difference, the more tests are required to prove a significant difference.

TABLE XIV
SAMPLE STATISTICAL PROBLEM (RANDOM NUMBERS O TO 35)
B = 0.6A (BY DEFINITION)

		914								
. No .	Descr	Description	VARIANCE	INCE .	MEAN	z	Ratto	Yalue	۳,	REMARKS
	۷	8	A	8	A	8				
-	34.0	20.4								
	14.0	8.4	200.0	72.0	24.0	14.4	2.78	1.43	2.92	Based on 4 tests
2	11.0	9.9								
	18.0	10.8								
	2.0	1.2								
	7.0	4.2	123.5	44.4	14.3	9.8	2.78	1.28	1.81	Based on 12 tests
ĸ	17.0	10.2								
	19.0	11.4								
	1.0	9.0								
	30.0	18.0			HEREN'S APP					
	11.0	9.9								
	12.0	7.2	38.6	35.5	14.7	8.8	2.78	1.91	1.72	Based on 24 tests
										Ť

APPENDIX V

PROPERTIES OF JP-4 AND JP-8 FUELS

At the present time the United States Air Force uses JP-4 (Commercial Designation: JET B), a wide-cut distillate fuel, as its preferred operational fuel. JP-4 was adopted back in the early 1950's, and its properties were selected to maximize worldwide availability while fulfilling aircraft operational performance requirements. The proposed replacement fuel, JP-8, has lower volatility, and its properties were determined by worldwide availability, operational performance, and fire safety considerations. The comparative properties of JP-4 and JP-8 are given in Table XV.

TABLE XY

d.	PROPERTIES OF JP-4 AND JP-8 FUELS	-4 AND JP-8 FU	ELS	
	. 4 € Q.	JP-8_	JP-4 SPEC.	PROPOSED JP-8 SPEC.
Flash Point (°F)	-20	118	•	051-501
Distillation (°5) (a) Initial Boiling Point (b) End Point	140 455	314 508	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	550
*Gravity (°API)	54.4	43.8		39-51
Freeze Point (°F)	08-	59-	-76 max.	-54 max.
Aromatics	11.4	16	25 max.	25 max.
Clefins	_	2	•	5 пах.
Viscosity (Centistokes at - 30°F)	.; 4.:	8	,	15 max.
Reid Vapor pressure (psi at 100°F)	5.6	۲۰۵۶	2.0-3.0	į
Density (1bs/gal)	6.41	6.81	6.25-6.68	6.46-6.91
Heat of Combustion (a) BTU/1b (b) BTU/gal	18,714	18,559 125,830	18,400 min.	18,400 min.
Autoignition Temp. (°F)	~484 min.	~473	1 1 2	;
Running Velocity- Vapor-Air Mixture (ft/sec)	~1-2	~]-2		
Flame Spread Rate, Quiescent Liquid, 80°F (ft/min)	~750	~25	! ! !	:
* TYPICAL OF FUEL USED IN FAA TEST PROGKAM	PROGRAM			

REFERENCES

- G. W. Gandee "Evaluation of Fire Saft Fuels," paper presented at the Industry-Military Jet Fuel Quality Symposium, October 22, 23, and 24, 1968, San Antonio, Texas.
- 2. AFAPL-TR-70-93, AFAPL Aircraft Fire Test Program with FAA, 1967-1970, June 1971.
- 3. APFH-TM-70-34, "Evaluation of JP-8 Versus JP-4 Fuel for Enhancement of Aircraft Combat Survivability." June 1970.
- 4. AFAPL-TR-70-82, <u>Influence of Fuel Slosh Upon the Effectiveness of Nitrogen Inerting for Aircraft Fuel Tank</u>, February 1971.